54 research outputs found
PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes
<p>Abstract</p> <p>Background</p> <p>The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT) is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes.</p> <p>Results</p> <p>PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function.</p> <p>Conclusion</p> <p>PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any web browser with no client side software setup or installation required. Source code is freely available to researchers interested in setting up a local version of PSAT for analysis of genomes not available through the public server. Access to the public web server and instructions for obtaining source code can be found at <url>http://www.nwrce.org/psat</url>.</p
A Francisella Mutant in Lipid A Carbohydrate Modification Elicits Protective Immunity
Francisella tularensis (Ft) is a highly infectious Gram-negative bacterium and the causative agent of the human disease tularemia. Ft is designated a class A select agent by the Centers for Disease Control and Prevention. Human clinical isolates of Ft produce lipid A of similar structure to Ft subspecies novicida (Fn), a pathogen of mice. We identified three enzymes required for Fn lipid A carbohydrate modifications, specifically the presence of mannose (flmF1), galactosamine (flmF2), or both carbohydrates (flmK). Mutants lacking either galactosamine (flmF2) or galactosamine/mannose (flmK) addition to their lipid A were attenuated in mice by both pulmonary and subcutaneous routes of infection. In addition, aerosolization of the mutants (flmF2 and flmK) provided protection against challenge with wild-type (WT) Fn, whereas subcutaneous administration of only the flmK mutant provided protection from challenge with WT Fn. Furthermore, infection of an alveolar macrophage cell line by the flmK mutant induced higher levels of tumor necrosis factor-α (TNF-α) and macrophage inhibitory protein-2 (MIP-2) when compared to infection with WT Fn. Bone marrow–derived macrophages (BMMø) from Toll-like receptor 4 (TLR4) and TLR2/4 knockout mice infected with the flmK mutant also produced significantly higher amounts of interleukin-6 (IL-6) and MIP-2 than BMMø infected with WT Fn. However, production of IL-6 and MIP-2 was undetectable in BMMø from MyD88−/− mice infected with either strain. MyD88−/− mice were also susceptible to flmK mutant infection. We hypothesize that the ability of the flmK mutant to activate pro-inflammatory cytokine/chemokine production and innate immune responses mediated by the MyD88 signaling pathway may be responsible for its attenuation, leading to the induction of protective immunity by this mutant
Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains
.Sequencing of the non-pathogenic Francisella tularensis sub-species novicida U112, and comparison with two pathogenic sub-species, provides insights into the evolution of pathogenicity in these species
Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions
Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections
Evolution of Burkholderia pseudomallei in Recurrent Melioidosis
Burkholderia pseudomallei, the etiologic agent of human melioidosis, is capable of causing severe acute infection with overwhelming septicemia leading to death. A high rate of recurrent disease occurs in adult patients, most often due to recrudescence of the initial infecting strain. Pathogen persistence and evolution during such relapsing infections are not well understood. Bacterial cells present in the primary inoculum and in late infections may differ greatly, as has been observed in chronic disease, or they may be genetically similar. To test these alternative models, we conducted whole-genome comparisons of clonal primary and relapse B. pseudomallei isolates recovered six months to six years apart from four adult Thai patients. We found differences within each of the four pairs, and some, including a 330 Kb deletion, affected substantial portions of the genome. Many of the changes were associated with increased antibiotic resistance. We also found evidence of positive selection for deleterious mutations in a TetR family transcriptional regulator from a set of 107 additional B. pseudomallei strains. As part of the study, we sequenced to base-pair accuracy the genome of B. pseudomallei strain 1026b, the model used for genetic studies of B. pseudomallei pathogenesis and antibiotic resistance. Our findings provide new insights into pathogen evolution during long-term infections and have important implications for the development of intervention strategies to combat recurrent melioidosis
Etude d'un îlot de pathogénicité dans Pseudomonas syringae (caractérisation des mécanismes de l'évolution d'effecteurs de type III et des régions qui les codent dans le génome de pseudomonas syringae)
PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF
Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis.
International audienceIt is interesting to speculate that the evolutionary drive for microbes to develop pathogenic characteristics was to access the nutrient resources that animals provided. Animal environments that pathogens colonize have likely driven the evolution of new bacterial characteristics to maximize these new nutritional opportunities. This review focuses on genomic and functional aspects of pathogen metabolism that allow efficient utilization of nutrient resources provided by animals. Similar to genes encoding specific virulence traits, genes encoding metabolic functions have been horizontally acquired by pathogens to provide a selective advantage in host tissues. Selective advantage in host tissues can also be gained by loss of function mutations that alter metabolic capabilities. Greater understanding of bacterial metabolism within host tissues should be important for increased understanding of host-pathogen interactions and the development of future therapeutic strategies
Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae.
Many gram-negative pathogenic bacteria directly translocate effector proteins into eukaryotic host cells via type III delivery systems. Type III effector proteins are determinants of virulence on susceptible plant hosts; they are also the proteins that trigger specific disease resistance in resistant plant hosts. Evolution of type III effectors is dominated by competing forces: the likely requirement for conservation of virulence function, the avoidance of host defenses, and possible adaptation to new hosts. To understand the evolutionary history of type III effectors in Pseudomonas syringae, we searched for homologs to 44 known or candidate P. syringae type III effectors and two effector chaperones. We examined 24 gene families for distribution among bacterial species, amino acid sequence diversity, and features indicative of horizontal transfer. We assessed the role of diversifying and purifying selection in the evolution of these gene families. While some P. syringae type III effectors were acquired recently, others have evolved predominantly by descent. The majority of codons in most of these genes were subjected to purifying selection, suggesting selective pressure to maintain presumed virulence function. However, members of 7 families had domains subject to diversifying selection
Implicit Untangling: A Robust Solution for Modeling Layered Clothing
International audienceWe propose a robust method for untangling an arbitrary number of cloth layers, possibly exhibiting deep interpenetrations, to a collision-free state, ready for animation. Our method relies on an intermediate, implicit representation to solve the problem: the user selects a few garments stored in a library together with their implicit approximations, and places them over a mannequin while specifying the desired order between layers. The intersecting implicit surfaces are then combined using a new family of N-ary composition operators, specially designed for untangling layers. Garment meshes are finally projected to the deformed implicit surfaces in linear time, while best preserving triangles and avoiding loss of details. Each of the untangling operators computes the target surface for a given garment in a single step, while accounting for the order between cloth layers and their individual thicknesses. As a group, they guarantee an intersection-free output configuration. Moreover, a weight can be associated with each layer to tune their relative influence during untangling, such as leather being less deformed than cloth. Results for each layer then reflect the combined effect of the other layers, enabling us to output a plausible configuration in contact regions. As our results show, our method can be used to generate plausible, new static shapes of garments when underwear has been added, as well as collision-free configurations enabling a user to safely launch animations of arbitrarily complex layered clothing
Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes
The article of record as published may be found at http://dx.doi.org/10.1038/srep05113Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is
permanently attached. Applying a scientific name to any specimen therefore requires demonstrating
correspondence between the type and that specimen. Traditionally, identifications are based on
morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are
flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution.
Using 434 mm2 of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes
attributed to the red algae Pyropia perforata, Py. fucicola, and Py. kanakaensis. The chloroplast genomes
were fairly conserved, but the mitochondrial genomes differed significantly among populations in content
and length. Complete genomes are attainable from 19th and early 20th century type specimens; this validates
the effort and cost of their curation as well as supports the practice of the type method
- …