372 research outputs found

    Duality without Supersymmetry: The Case of the SO(16)xSO(16) String

    Get PDF
    We extend strong/weak coupling duality to string theories without spacetime supersymmetry, and focus on the case of the unique ten-dimensional, nonsupersymmetric, tachyon-free SO(16)Ă—SO(16)SO(16)\times SO(16) heterotic string. We construct a tachyon-free heterotic string model that interpolates smoothly between this string and the ten-dimensional supersymmetric SO(32)SO(32) heterotic string, and we construct a dual for this interpolating model. We find that the perturbative massless states of our dual theories precisely match within a certain range of the interpolation. Further evidence for this proposed duality comes from a calculation of the one-loop cosmological constant in both theories, as well as the presence of a soliton in the dual theory. This is therefore the first known duality relation between nonsupersymmetric tachyon-free string theories. Using this duality, we then investigate the perturbative and nonperturbative stability of the SO(16)Ă—SO(16)SO(16)\times SO(16) string, and present a conjecture concerning its ultimate fate.Comment: 15 pages, LaTeX, 3 figure

    Supersymmetric Electroweak Cosmic Strings

    Get PDF
    We study the connection between N=2N=2 supersymmetry and a topological bound in a two-Higgs-doublet system with an SU(2)×U(1)Y×U(1)Y′SU(2)\times U(1)_Y\times U(1)_{Y^{\prime}} gauge group. We derive the Bogomol'nyi equations from supersymmetry considerations showing that they hold provided certain conditions on the coupling constants, which are a consequence of the huge symmetry of the theory, are satisfied. Their solutions, which can be interpreted as electroweak cosmic strings breaking one half of the supersymmetries of the theory, are studied. Certain interesting limiting cases of our model which have recently been considered in the literature are finally analyzed.Comment: 20 pages, RevTe

    Holographic Gauge Theories in Background Fields and Surface Operators

    Full text link
    We construct a new class of supersymmetric surface operators in N=4 SYM and find the corresponding dual supergravity solutions. We show that the insertion of the surface operator - which is given by a WZW model supported on the surface - appears by integrating out the localized degrees of freedom along the surface which arise microscopically from a D3/D7 brane intersection. Consistency requires constructing N=4 SYM in the D7 supergravity background and not in flat space. This enlarges the class of holographic gauge theories dual to string theory backgrounds to gauge theories in non-trivial supergravity backgrounds. The dual Type IIB supergravity solutions we find reveal - among other features - that the holographic dual gauge theory does indeed live in the D7-brane background.Comment: 42 pages, harvmac, corrected typo

    In vivo activity of a mixture of two human monoclonal antibodies (anti-HBs) in a chronic hepatitis B virus carrier chimpanzee

    Get PDF
    A 35-year-old female hepatitis B virus carrier chimpanzee was infused with one dose of a mixture of human monoclonal antibodies 9H9 and 4-7B (antibodies against hepatitis B virus surface antigen; HBsAg). Blood samples were taken before and up to 3 weeks after infusion. HBsAg and antibodies against HBsAg (anti-HBs) were quantified by radioimmunoassay and enzyme immunoassay. Free anti-HBs was never detected. Thirty min after the start of the infusion the HBsAg level was minimal with maximum loading of the chimpanzee HBsAg with human immunoglobulin. HBsAg complexes could be dissociated by acid treatment. The HBsAg level was completely restored on day 7. Similar results were obtained for the preS1-containing particles that may represent the infectious viral particles in the chimpanzee serum. A mouse monoclonal anti-HBs (HBs.OT40) was found to compete with 9H9 in artificial immune complexes with the pre-treatment HBsAg from the chimpanzee. Used as a conjugate, HBs.OT40 yielded a maximum decrease in the signal in the 30 min sample compared to non-competing anti-HBs conjugates. This indicates binding of HBsAg with 9H9 in the circulation of the chimpanzee. Immune-complexed 4-7B could not be detected by its corresponding 4-7B peptide conjugate, probably due to its low concentration in the complexes. It is concluded that human monoclonal anti-HBs can effectively reduce the level of HBsAg in serum from this chronic carrier. Monoclonals 9H9 and 4-7B may complement each other due to their different mechanisms of inactivation, probably with higher efficiency than that monitored by our HBsAg screening assays

    Exotic Differentiable Structures and General Relativity

    Full text link
    We review recent developments in differential topology with special concern for their possible significance to physical theories, especially general relativity. In particular we are concerned here with the discovery of the existence of non-standard (``fake'' or ``exotic'') differentiable structures on topologically simple manifolds such as S7S^7, \R and S3Ă—R1.S^3\times {\bf R^1}. Because of the technical difficulties involved in the smooth case, we begin with an easily understood toy example looking at the role which the choice of complex structures plays in the formulation of two-dimensional vacuum electrostatics. We then briefly review the mathematical formalisms involved with differentiable structures on topological manifolds, diffeomorphisms and their significance for physics. We summarize the important work of Milnor, Freedman, Donaldson, and others in developing exotic differentiable structures on well known topological manifolds. Finally, we discuss some of the geometric implications of these results and propose some conjectures on possible physical implications of these new manifolds which have never before been considered as physical models.Comment: 11 pages, LaTe

    Moduli Stabilisation in Heterotic Models with Standard Embedding

    Full text link
    In this note we analyse the issue of moduli stabilisation in 4d models obtained from heterotic string compactifications on manifolds with SU(3) structure with standard embedding. In order to deal with tractable models we first integrate out the massive fields. We argue that one can not only integrate out the moduli fields, but along the way one has to truncate also the corresponding matter fields. We show that the effective models obtained in this way do not have satisfactory solutions. We also look for stabilised vacua which take into account the presence of the matter fields. We argue that this also fails due to a no-go theorem for Minkowski vacua in the moduli sector which we prove in the end. The main ingredient for this no-go theorem is the constraint on the fluxes which comes from the Bianchi identity.Comment: 20 pages, LaTeX; references adde

    Black Holes and Five-brane Thermodynamics

    Get PDF
    The phase diagram for Dp-branes in M-theory compactified on T4T^4, T4/Z2T^4/Z_2, T5T^5, and T6T^6 is constructed. As for the lower-dimensional tori considered in our previous work (hep-th/9810224), the black brane phase at high entropy connects onto matrix theory at low entropy; we thus recover all known instances of matrix theory as consequences of the Maldacena conjecture. The difficulties that arise for T6T^6 are reviewed. We also analyze the D1-D5 system on T5T^5; we exhibit its relation to matrix models of M5-branes, and use spectral flow as a tool to investigate the dependence of the phase structure on angular momentum.Comment: 57 pages, 6 eps figures, latex. v2: DLCQ limit of 5-brane corrected; typos corrected, references added. v3: reference added, typos corrected v4: comments on DLCQ limit of 5-brane corrected one last time. Final version, to appear in Phys. Rev.

    Supersymmetry breaking on orbifolds from Wilson lines

    Get PDF
    We consider five dimensional theories compactified on the orbifold S^1/Z_2 and prove that spontaneous local supersymmetry breaking by Wilson lines and by the Scherk-Schwarz mechanism are equivalent. Wilson breaking is triggered by the SU(2)_R symmetry which is gauged in off-shell N=2 supergravity by auxiliary fields. The super-Higgs mechanism disposes of the would-be Goldstinos which are absorbed by the gravitinos to become massive. The breaking survives in the flat limit, where we decouple all gravitational interactions, and the theory becomes softly broken global supersymmetry.Comment: 9 pages, some comments in the discussion of the super-Higgs effect and some references adde
    • …
    corecore