11 research outputs found

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    HARMONI at ELT: designing a laser guide star wavefront sensors for the ELT

    No full text
    International audienceHARMONI is the first light visible and near-IR integral field spectrograph for the ELT covering a large spectral range from 450nm to 2450nm with resolving powers from 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes-SCAO and LTAO-or with no AO. The project is preparing for Final Design Reviews. The laser Tomographic AO (LTAO) system provides AO correction with very high sky-coverage thanks to two systems: the Laser Guide Star Sensors (LGSS) and the Natural Guide Star Sensors (NGSS). LGSS is dedicated to the analysis of the wavefront coming from 6 laser guide stars created by the ELT. It is made of 6 independent wavefront sensor (WFS) modules mounted on a rotator of 600mm diameter to stabilise the pupil onto the microlens array in front of the detector. The optical design accepts elongated spots of up to 16 arcsec with no truncation using a CMOS detector from SONY. We will present the final optical and mechanical design of the LGSS based on freeform lenses to minimize the numbers of optical components and to accommodate for the diversity of sodium layer configurations. We will focus on rotator design, illustrating how we will move 1 tons with 90" accuracy in restrictive environment. Finally, we will present the strategy to verify the system in HARMONI context. The main challenge for the verification being how to test an AO system without access to the deformable mirror, part of the ELT

    HARMONI at ELT: designing a laser guide star wavefront sensors for the ELT

    No full text
    International audienceHARMONI is the first light visible and near-IR integral field spectrograph for the ELT covering a large spectral range from 450nm to 2450nm with resolving powers from 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes-SCAO and LTAO-or with no AO. The project is preparing for Final Design Reviews. The laser Tomographic AO (LTAO) system provides AO correction with very high sky-coverage thanks to two systems: the Laser Guide Star Sensors (LGSS) and the Natural Guide Star Sensors (NGSS). LGSS is dedicated to the analysis of the wavefront coming from 6 laser guide stars created by the ELT. It is made of 6 independent wavefront sensor (WFS) modules mounted on a rotator of 600mm diameter to stabilise the pupil onto the microlens array in front of the detector. The optical design accepts elongated spots of up to 16 arcsec with no truncation using a CMOS detector from SONY. We will present the final optical and mechanical design of the LGSS based on freeform lenses to minimize the numbers of optical components and to accommodate for the diversity of sodium layer configurations. We will focus on rotator design, illustrating how we will move 1 tons with 90" accuracy in restrictive environment. Finally, we will present the strategy to verify the system in HARMONI context. The main challenge for the verification being how to test an AO system without access to the deformable mirror, part of the ELT

    HARMONI at ELT: designing a laser guide star wavefront sensors for the ELT

    No full text
    International audienceHARMONI is the first light visible and near-IR integral field spectrograph for the ELT covering a large spectral range from 450nm to 2450nm with resolving powers from 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes-SCAO and LTAO-or with no AO. The project is preparing for Final Design Reviews. The laser Tomographic AO (LTAO) system provides AO correction with very high sky-coverage thanks to two systems: the Laser Guide Star Sensors (LGSS) and the Natural Guide Star Sensors (NGSS). LGSS is dedicated to the analysis of the wavefront coming from 6 laser guide stars created by the ELT. It is made of 6 independent wavefront sensor (WFS) modules mounted on a rotator of 600mm diameter to stabilise the pupil onto the microlens array in front of the detector. The optical design accepts elongated spots of up to 16 arcsec with no truncation using a CMOS detector from SONY. We will present the final optical and mechanical design of the LGSS based on freeform lenses to minimize the numbers of optical components and to accommodate for the diversity of sodium layer configurations. We will focus on rotator design, illustrating how we will move 1 tons with 90" accuracy in restrictive environment. Finally, we will present the strategy to verify the system in HARMONI context. The main challenge for the verification being how to test an AO system without access to the deformable mirror, part of the ELT

    HARMONI at ELT: designing a laser guide star wavefront sensors for the ELT

    No full text
    International audienceHARMONI is the first light visible and near-IR integral field spectrograph for the ELT covering a large spectral range from 450nm to 2450nm with resolving powers from 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes-SCAO and LTAO-or with no AO. The project is preparing for Final Design Reviews. The laser Tomographic AO (LTAO) system provides AO correction with very high sky-coverage thanks to two systems: the Laser Guide Star Sensors (LGSS) and the Natural Guide Star Sensors (NGSS). LGSS is dedicated to the analysis of the wavefront coming from 6 laser guide stars created by the ELT. It is made of 6 independent wavefront sensor (WFS) modules mounted on a rotator of 600mm diameter to stabilise the pupil onto the microlens array in front of the detector. The optical design accepts elongated spots of up to 16 arcsec with no truncation using a CMOS detector from SONY. We will present the final optical and mechanical design of the LGSS based on freeform lenses to minimize the numbers of optical components and to accommodate for the diversity of sodium layer configurations. We will focus on rotator design, illustrating how we will move 1 tons with 90" accuracy in restrictive environment. Finally, we will present the strategy to verify the system in HARMONI context. The main challenge for the verification being how to test an AO system without access to the deformable mirror, part of the ELT

    Isolation of a Nonicosahedral Intermediate in the Isomerization of an Icosahedral Metallacarborane

    Get PDF
    We describe the design and performance of the Medium Resolution Spectrometer (MRS) for the JWST-MIRI instrument. The MRS incorporates four coaxial spectral channels in a compact opto-mechanical layout that generates spectral images over fields of view up to 7.7 × 7.7″ in extent and at spectral resolving powers ranging from 1300 to 3700. Each channel includes an all-reflective integral field unit (IFU): an “image slicer” that reformats the input field for presentation to a grating spectrometer. Two 1024 × 1024 focal plane detector arrays record the output spectral images with an instantaneous spectral coverage of approximately one third of the full wavelength range of each channel. The full 5–28.5 μm spectrum is then obtained by making three exposures using gratings and pass-band-determining filters that are selected using just two three-position mechanisms. The expected on-orbit optical performance is presented, based on testing of the MIRI Flight Model and including spectral and spatial coverage and resolution. The point spread function of the reconstructed images is shown to be diffraction limited and the optical transmission is shown to be consistent with the design expectations

    Mint

    No full text

    Design and Mounting of Metallic Mirrors

    No full text
    corecore