284 research outputs found
Effective dissipative dynamics for polarized photons
In the framework of open quantum systems, the propagation of polarized
photons can be effectively described using quantum dynamical semigroups. These
extended time-evolutions induce irreversibility and dissipation. Planned, high
sensitive experiments, both in the laboratory and in space, will be able to put
stringent bounds on these non-standard effects.Comment: 15 pages, plain-TeX, no figure
A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline
The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the
handling of the scientific and housekeeping telemetry. It is a critical
component of the Planck ground segment which has to strictly commit to the
project schedule to be ready for the launch and flight operations. In order to
guarantee the quality necessary to achieve the objectives of the Planck
mission, the design and development of the Level 1 software has followed the
ESA Software Engineering Standards. A fundamental step in the software life
cycle is the Verification and Validation of the software. The purpose of this
work is to show an example of procedures, test development and analysis
successfully applied to a key software project of an ESA mission. We present
the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by
detailing the methods used and the results obtained. Different approaches have
been used to test the scientific and housekeeping data processing. Scientific
data processing has been tested by injecting signals with known properties
directly into the acquisition electronics, in order to generate a test dataset
of real telemetry data and reproduce as much as possible nominal conditions.
For the HK telemetry processing, validation software have been developed to
inject known parameter values into a set of real housekeeping packets and
perform a comparison with the corresponding timelines generated by the Level 1.
With the proposed validation and verification procedure, where the on-board and
ground processing are viewed as a single pipeline, we demonstrated that the
scientific and housekeeping processing of the Planck-LFI raw data is correct
and meets the project requirements.Comment: 20 pages, 7 figures; this paper is part of the Prelaunch status LFI
papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jins
Off-line radiometric analysis of Planck/LFI data
The Planck Low Frequency Instrument (LFI) is an array of 22
pseudo-correlation radiometers on-board the Planck satellite to measure
temperature and polarization anisotropies in the Cosmic Microwave Background
(CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the
performances of the LFI, a software suite named LIFE has been developed. Its
aims are to provide a common platform to use for analyzing the results of the
tests performed on the single components of the instrument (RCAs, Radiometric
Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA).
Moreover, its analysis tools are designed to be used during the flight as well
to produce periodic reports on the status of the instrument. The LIFE suite has
been developed using a multi-layered, cross-platform approach. It implements a
number of analysis modules written in RSI IDL, each accessing the data through
a portable and heavily optimized library of functions written in C and C++. One
of the most important features of LIFE is its ability to run the same data
analysis codes both using ground test data and real flight data as input. The
LIFE software suite has been successfully used during the RCA/RAA tests and the
Planck Integrated System Tests. Moreover, the software has also passed the
verification for its in-flight use during the System Operations Verification
Tests, held in October 2008.Comment: Planck LFI technical papers published by JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022
High Resolution Mid-Infrared Imaging of Radio Ultra-Compact HII Regions
We present data from mid-infrared Keck Telescope imaging of 18 radio-selected
ultra-compact HII region candidates at diffraction-limited resolution. The goal
of these observations is to determine the sizes, luminosities, and morphologies
of the mid-infrared emitting dust surrounding the stellar sources. All 18
sources were imaged at 11.7um and at 17.65um, and 10 of them were imaged also
at 24.5um. All the sources were resolved. We have generated dust temperature
and optical depth maps and combine them with radial velocity measurements and
radio data (1.4 and 5 GHz) to constrain the properties of these star-forming
regions. Half of our objects are excited by B-stars, and all our objects have
derived types that are later than an O6 star. We find a significant correlation
between infrared and radio flux densities, and a weaker one between infrared
diameters and the central source ionizing photon rates. This latter correlation
suggests that the more compact sources result from later spectral types rather
than young age. Our new data may suggest a revision to infrared color selection
criteria of ultra-compact HII regions at resolutions <1". These 18 sources are
part of a sample of 687 sources dominated by ultra-compact HII regions selected
by matching radio and infrared maps of the first Galactic quadrant by Giveon
and coworkers. The new mid-infrared images constitute a significant improvement
in resolving sub-structure at these wavelengths. If applied to all of this
sample our analysis will improve our understanding of embedded star-formation
in the Galaxy.Comment: 66 pages, 34 figures. Accepted for publication in A
Optimization of Planck/LFI on--board data handling
To asses stability against 1/f noise, the Low Frequency Instrument (LFI)
onboard the Planck mission will acquire data at a rate much higher than the
data rate allowed by its telemetry bandwith of 35.5 kbps. The data are
processed by an onboard pipeline, followed onground by a reversing step. This
paper illustrates the LFI scientific onboard processing to fit the allowed
datarate. This is a lossy process tuned by using a set of 5 parameters Naver,
r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level
of distortion introduced by the onboard processing, EpsilonQ, as a function of
these parameters. It describes the method of optimizing the onboard processing
chain. The tuning procedure is based on a optimization algorithm applied to
unprocessed and uncompressed raw data provided either by simulations, prelaunch
tests or data taken from LFI operating in diagnostic mode. All the needed
optimization steps are performed by an automated tool, OCA2, which ends with
optimized parameters and produces a set of statistical indicators, among them
the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr =
2.4 and EpsilonQ <= 10% of the rms of the instrumental white noise. To speedup
the process an analytical model is developed that is able to extract most of
the relevant information on EpsilonQ and Cr as a function of the signal
statistics and the processing parameters. This model will be of interest for
the instrument data analysis. The method was applied during ground tests when
the instrument was operating in conditions representative of flight. Optimized
parameters were obtained and the performance has been verified, the required
data rate of 35.5 Kbps has been achieved while keeping EpsilonQ at a level of
3.8% of white noise rms well within the requirements.Comment: 51 pages, 13 fig.s, 3 tables, pdflatex, needs JINST.csl, graphicx,
txfonts, rotating; Issue 1.0 10 nov 2009; Sub. to JINST 23Jun09, Accepted
10Nov09, Pub.: 29Dec09; This is a preprint, not the final versio
The OSACA Database and a Kinematic Analysis of Stars in the Solar Neighborhood
We transformed radial velocities compiled from more than 1400 published
sources, including the Geneva--Copenhagen survey of the solar neighborhood
(CORAVEL-CfA), into a uniform system based on the radial velocities of 854
standard stars in our list. This enabled us to calculate the average weighted
radial velocities for more than 25~000 HIPPARCOS stars located in the local
Galactic spiral arm (Orion arm) with a median error of +-1 km/s. We use these
radial velocities together with the stars' coordinates, parallaxes, and proper
motions to determine their Galactic coordinates and space velocities. These
quantities, along with other parameters of the stars, are available from the
continuously updated Orion Spiral Arm CAtalogue (OSACA) and the associated
database. We perform a kinematic analysis of the stars by applying an
Ogorodnikov-Milne model to the OSACA data. The kinematics of the nearest single
and multiple main-sequence stars differ substantially. We used distant
(r\approx 0.2 kpc) stars of mixed spectral composition to estimate the angular
velocity of the Galactic rotation -25.7+-1.2 km/s/kpc, and the vertex
deviation,l=13+-2 degrees, and detect a negative K effect. This negative K
effect is most conspicuous in the motion of A0-A5 giants, and is equal to
K=-13.1+-2.0 km/s/kpc.Comment: 16 pages, 8 figure
Kinematics of Tycho-2 Red Giant Clump Stars
Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95 633
red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort
constants have been found: A = 15.9+-0.2 km/s/kpc and B = -12.0+-0.2 km/s/kpc.
Using 3632 RGC stars with known proper motions, radial velocities, and
photometric distances, we show that, apart from the star centroid velocity
components relative to the Sun, only the model parameters that describe the
stellar motions in the XY plane differ significantly from zero. We have studied
the contraction (a negative K-effect) of the system of RGC stars as a function
of their heliocentric distance and elevation above the Galactic plane. For a
sample of distant (500--1000 pc) RGC stars located near the Galactic plane
(|Z|<200 pc) with an average distance of d=0.7 kpc, the contraction velocity is
shown to be Kd= -3.5+-0.9 km/s; a noticeable vertex deviation, lxy = 9.1+-0.5
degrees, is also observed for them. For stars located well above the Galactic
plane (|Z|>=200 pc), these effects are less pronounced, Kd = -1.7+-0.5 km/s and
lxy = 4.9+-0.6 degrees. Using RGC stars, we have found a rotation around the
Galactic X axis directed toward the Galactic center with an angular velocity of
-2.5+-0.3 km/s/kpc, which we associate with the warp of the Galactic
stellar-gaseous disk.Comment: 23 pages, 7 figures, 4 table
The Family Name as Socio-Cultural Feature and Genetic Metaphor: From Concepts to Methods
A recent workshop entitled The Family Name as Socio-Cultural Feature and Genetic Metaphor: From Concepts to Methods was held in Paris in December 2010, sponsored by the French National Centre for Scientific Research (CNRS) and by the journal Human Biology. This workshop was intended to foster a debate on questions related to the family names and to compare different multidisciplinary approaches involving geneticists, historians, geographers, sociologists and social anthropologists. This collective paper presents a collection of selected communications
Can EROS/MACHO be detecting the galactic spheroid instead of the galactic halo?
Models of our galaxy based on dynamical observations predict a spheroid
component much heavier than accounted for by direct measurements of star counts
and high velocity stars. If, as first suggested by Caldwell and Ostriker, this
discrepancy is due to a large population of faint low-mass stars or dark
objects in the spheroid, the spheroid could be responsible for microlensing
events for sources in the Large Magellanic Cloud (LMC). We show that, although
the rate of events is lower than predicted by a galactic halo made of
microlensing objects, it is still significant for EROS/MACHO observations.
Because of the different matter distributions in the halo and spheroid
components, a comparison between microlensing event rates in the LMC, future
measurements of microlensing in the galactic bulge and, possibly, in M31 can
provide information about the amounts of dark objects in the different galactic
components. If the EROS/MACHO collaborations find a deficiency with respect to
their halo expectation, when more statistics are available, their detected
events could be interpreted as coming from spheroid microlenses, allowing for a
galactic halo composed entirely of non-baryonic dark matter.Comment: 12 pages, CERN-TH.7127/9
<em>Aspergillus nidulans</em> Synthesize Insect Juvenile Hormones upon Expression of a Heterologous Regulatory Protein and in Response to Grazing by <em>Drosophila melanogaster</em> Larvae.
Secondary metabolites are known to serve a wide range of specialized functions including communication, developmental control and defense. Genome sequencing of several fungal model species revealed that the majority of predicted secondary metabolite related genes are silent in laboratory strains, indicating that fungal secondary metabolites remain an underexplored resource of bioactive molecules. In this study, we combine heterologous expression of regulatory proteins in Aspergillus nidulans with systematic variation of growth conditions and observe induced synthesis of insect juvenile hormone-III and methyl farnesoate. Both compounds are sesquiterpenes belonging to the juvenile hormone class. Juvenile hormones regulate developmental and metabolic processes in insects and crustaceans, but have not previously been reported as fungal metabolites. We found that feeding by Drosophila melanogaster larvae induced synthesis of juvenile hormone in A. nidulans indicating a possible role of juvenile hormone biosynthesis in affecting fungal-insect antagonisms
- …