450 research outputs found
Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures
We study nonlocal vortex transport in mesoscopic amorphous Nb0.7Ge0.3
samples. A dc current I is passed through a wire connected via a perpendicular
channel, of a length L= 2-5 um, with a pair of voltage probes where a nonlocal
response Vnl ~ I is measured. The maximum of Rnl=Vnl/I for a given temperature
occurs at an L-independent magnetic field and is proportional to 1/L. The
results are interpreted in terms of the dissipative vortex motion along the
channel driven by a remote current, and can be understood in terms of a simple
model.Comment: 4 pages, 3 figure
Quasiparticle energies for large molecules: a tight-binding GW approach
We present a tight-binding based GW approach for the calculation of
quasiparticle energy levels in confined systems such as molecules. Key
quantities in the GW formalism like the microscopic dielectric function or the
screened Coulomb interaction are expressed in a minimal basis of spherically
averaged atomic orbitals. All necessary integrals are either precalculated or
approximated without resorting to empirical data. The method is validated
against first principles results for benzene and anthracene, where good
agreement is found for levels close to the frontier orbitals. Further, the size
dependence of the quasiparticle gap is studied for conformers of the polyacenes
() up to n = 30.Comment: 10 pages, 5 eps figures submitted to Phys. Rev.
Doppler Shift in Andreev Reflection from a Moving Superconducting Condensate in Nb/InAs Josephson Junctions
We study narrow ballistic Josephson weak links in a InAs quantum wells
contacted by Nb electrodes and find a dramatic magnetic-field suppression of
the Andreev reflection amplitude, which occurs even for in-plane field
orientation with essentially no magnetic flux through the junction. Our
observations demonstrate the presence of a Doppler shift in the energy of the
Andreev levels, which results from diamagnetic screening currents in the hybrid
Nb/InAs-banks. The data for conductance, excess and critical currents can be
consistently explained in terms of the sample geometry and the McMillan energy,
characterizing the transparency of the Nb/InAs-interface.Comment: 4 pages, 5 figures, title modifie
Excitonic Effects on Optical Absorption Spectra of Doped Graphene
We have performed first-principles calculations to study optical absorption
spectra of doped graphene with many-electron effects included. Both self-energy
corrections and electron-hole interactions are reduced due to the enhanced
screening in doped graphene. However, self-energy corrections and excitonic
effects nearly cancel each other, making the prominent optical absorption peak
fixed around 4.5 eV under different doping conditions. On the other hand, an
unexpected increase of the optical absorbance is observed within the infrared
and visible-light frequency regime (1 ~ 3 eV). Our analysis shows that a
combining effect from the band filling and electron-hole interactions results
in such an enhanced excitonic effect on the optical absorption. These unique
variations of the optical absorption of doped graphene are of importance to
understand relevant experiments and design optoelectronic applications.Comment: 15 pages, 5 figures; Nano Lett., Article ASAP (2011
Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers
Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency
Anomalous relaxations and chemical trends at III-V nitride non-polar surfaces
Relaxations at nonpolar surfaces of III-V compounds result from a competition
between dehybridization and charge transfer. First principles calculations for
the (110) and (100) faces of zincblende and wurtzite AlN, GaN and InN
reveal an anomalous behavior as compared with ordinary III-V semiconductors.
Additional calculations for GaAs and ZnO suggest close analogies with the
latter. We interpret our results in terms of the larger ionicity (charge
asymmetry) and bonding strength (cohesive energy) in the nitrides with respect
to other III-V compounds, both essentially due to the strong valence potential
and absence of core states in the lighter anion. The same interpretation
applies to Zn II-VI compounds.Comment: RevTeX 7 pages, 8 figures included; also available at
http://kalix.dsf.unica.it/preprints/; improved after revie
Ab-initio calculation of the electronic and optical excitations in polythiophene: effects of intra- and interchain screening
We present an calculation of the electronic and optical excitations of an
isolated polythiophene chain as well as of bulk polythiophene. We use the GW
approximation for the electronic self-energy and include excitonic effects by
solving the electron-hole Bethe-Salpeter equation. The inclusion of interchain
screening in the case of bulk polythiophene drastically reduces both the
quasi-particle band gap and the exciton binding energies, but the optical gap
is hardly affected. This finding is relevant for conjugated polymers in
general.Comment: 4 pages, 1 figur
X-ray Absorption Near-Edge Structure calculations with pseudopotentials. Application to K-edge in diamond and alpha-quartz
We present a reciprocal-space pseudopotential scheme for calculating X-ray
absorption near-edge structure (XANES) spectra. The scheme incorporates a
recursive method to compute absorption cross section as a continued fraction.
The continued fraction formulation of absorption is advantageous in that it
permits the treatment of core-hole interaction through large supercells
(hundreds of atoms). The method is compared with recently developed
Bethe-Salpeter approach. The method is applied to the carbon K-edge in diamond
and to the silicon and oxygen K-edges in alpha-quartz for which polarized XANES
spectra were measured. Core-hole effects are investigated by varying the size
of the supercell, thus leading to information similar to that obtained from
cluster size analysis usually performed within multiple scattering
calculations.Comment: 11 pages, 4 figure
Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach
We present a method for computing optical absorption spectra by means of a
Bethe-Salpeter equation approach, which is based on a conserving linear
response calculation for electron-hole coherences in the presence of an
external electromagnetic field. This procedure allows, in principle, for the
determination of the electron-hole correlation function self-consistently with
the corresponding single-particle Green function. We analyze the general
approach for a "one-shot" calculation of the photoabsorption cross section of
finite systems, and discuss the importance of scattering and dephasing
contributions in this approach. We apply the method to the closed-shell
clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure
Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale
Experiments determining the lifetime of excited electrons in crystalline
copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\it
et al.}, Phys. Rev. B {\bf 55}, 10869 (1997)]. In this article we propose a
model which explains these states as transient excitonic states in metals. The
physical background of transient excitons is the finite time a system needs to
react to an external perturbation, in other words, the time which is needed to
build up a polarization cloud. This process can be probed with modern
ultra-short laser pulses. We calculate the time-dependent density-response
function within the jellium model and for real Cu. From this knowledge it is
possible within linear response theory to calculate the time needed to screen a
positive charge distribution and -- on top of this -- to determine excitonic
binding energies. Our results lead to the interpretation of the experimentally
detected states as transient excitonic states.Comment: 24 pages, 9 figures, to appear in Phys. Rev. B, Nov. 15, 2000, issue
2
- …