17 research outputs found

    Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences

    Get PDF
    The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection

    Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites.

    No full text
    The chromatin conformation of mouse genome regions containing Moloney murine leukemia proviral intergration sites in two Mov mouse strains and randomly selected integration sites in virus-infected mouse 3T3 fibroblasts was analyzed. All integrations have occurred into chromosomal regions containing several DNase-hypersensitive sites, and invariably the proviral integration sites map within a few hundred base pairs of a DNase-hypersensitive site. The probability that this close association between proviral integration sites and DNase-hypersensitive sites was due to chance was calculated to be extremely low (2 X 10(-4]. Because the proviral integrations analyzed were not selected for an altered phenotype, our results suggest that DNase-hypersensitive regions are preferred targets for retrovirus integration

    Oct-4: a germline-specific transcription factor mapping to the mouse t-complex.

    No full text
    Oct-4 is a maternally expressed octamer-binding protein encoded by the murine Oct-4 gene. It is present in unfertilized oocytes, but also in the inner cell mass and in primordial germ cells. Here we show that the ectopic expression of Oct-4 in HeLa cells is sufficient for transcriptional activation from the octamer motif, indicating that Oct-4 is a transcription factor. Therefore, Oct-4 is the first transcription factor described that is specific for the early stages of mouse development. The spatial and temporal expression patterns were further determined using in situ hybridization. With this technique Oct-4 expression is detected in the oocyte, in the blastocyst and before gastrulation in the embryonic ectoderm. After day 8 Oct-4 expression decreases and is restricted to primordial germ cells from about day 8.5 onwards. Therefore Oct-4 is a transcription factor that is specifically expressed in cells participating in the generation of the germline lineage. Linkage analysis using B X D recombinant inbred mouse strains demonstrates that Oct-4 maps to chromosome 17 in or near the major histocompatibility complex. Several mouse mutants in the distal region of the mouse t-complex affecting blastocyst and embryonic ectoderm formation also map to this region

    Oct-6: a POU transcription factor expressed in embryonal stem cells and in the developing brain.

    No full text
    A family of octamer binding proteins is expressed during mouse development. Oct-4 and Oct-6 have been identified as two octamer binding proteins present in embryonal stem cells. Here we report the complementary DNA cloning and characterization of the mouse Oct-6 gene. The protein of 448 amino acids contains a glycine/alanine-rich amino terminal region, a histidine-rich sequence with homology to a region of kininogen associated with clotting, a POU domain and a short proline/histidine-rich carboxy terminal region. Expression of Oct-6 in HeLa cells is sufficient for transcriptional activation from the octamer motif, identifying Oct-6 as a transcription factor. The Oct-6 expression is downregulated upon embryonic stem cell differentiation increasing again during brain development. Expression in brain is present in certain areas of telencephalon, mesencephalon and brain stem with abundant expression in the cortex anlagen and in the developing colliculi. Thus Oct-6 is a new octamer binding transcription factor specifically regulated during mouse development
    corecore