9 research outputs found

    Selective Harmonic Elimination Pulse Width Modulation for Five-Level Cascaded Inverter

    Get PDF
    This paper presents an efficient selective harmonics elimination method for a five-level cascaded inverter by using the Newton-Raphson method. The aim of this project is to eliminate selected low-order harmonics by solving non-linear equations using the programming developed based on NewtonRaphson method. Meanwhile, at the same time, the fundamental component is retained efficiently. Instead of single switching, multiple switching in quarter cycles has been introduced to increase the number of harmonic orders that should be eliminated. In addition, the low-order harmonics up to the 5th order for single switching and 17th order for multiple switching are eliminated from the inverter output voltage waveform for entire modulation index. The calculated switching angles have been inserted into the simulation model of the five-level inverter by using PSIM software. Moreover, the calculated switching angles for single and multiple switching are then tested by using a prototype of a five-level inverter that has been built in the laboratory. The simulation results are verified with the experimental results for single and multiple switching

    Zero-index metamaterial superstrates uwb antenna for microwave imaging detection

    Get PDF
    Metamaterials (MTM) can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice. Note that the antenna is the element for realizing a microwave imaging (MWI) system since it is where signal transmission and absorption occur. UltraWideband (UWB) antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna. The lack of conventional head imaging techniques, for instance, Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT)scan, has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems. Furthermore, the importance of MWI has been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis. Other than that, MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reason-ings. This paper proposes the novel design of a Zeroindex Split Ring Resonator (SRR) MTM element superstrate with a UWB antenna implemented in MWI systems for detecting tumor. The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB. Besides that, the MTM imitates the conduct of the zeroreflection phase on the resonance frequency, which does not exist. An antenna with an MTM unit is of a 7 × 4 and 10 × 5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna. Apart from that, Rogers (RT5880) substrate material is employed to fabricate the designed MTM unit cell, with the following characteristics: 0.51 mm thickness, the loss tangent of 0.02, as well as the relative permittivity of 2.2, with Computer Simulation Technology (CST) performing the simulation and design. Both MTM unit cells of 7 × 4 and 10 × 5 attained 0° with respect to the reflection phase at the 2.70 GHz frequency band. The first design, MTM Antenna Design 1, consists of a 7 × 4 MTM unit cell that observed a rise of 5.70 dB with a return loss (S11) −20.007 dB at 2.70 GHz frequency. The second design, MTM Antenna Design 2, consists of 10 × 5 MTM unit cells that recorded a gain of 5.66 dB, having the return loss (S11) −19.734 dB at 2.70 GHz frequency. Comparing these two MTM elements superstrates with the antenna, one can notice that the 7 × 4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10 × 5 MTM element in realizing MTM element superstrates antenna for MWI

    Comparison of lightning return stroke channel-base current models with measured lightning current

    Get PDF
    Electromagnetic pulse radiation produced around the lightning stroke channel has caused the disturbance to the microelectronic industry, especially to disturbance of high frequency to electronic systems. Lightning channel-base current function (CBC) characteristics and parameters determine lightning electromagnetic field (LEMF) results obtained on the basis of the used models. This paper evaluated and compared the measured lightning current and six lightning current-based channels models namely Bruce and Golde, Heidler, Diendorfer and Uman, Nucci, Pierce and Cianos and new current-based current (NCBC) models. In terms of the waveshape, among all the six lightning channel-based current models discussed, the models developed by Javor, Nucci and Diendorfer and Uman have showed a good agreement compared to the measured lightning current. In terms of 10-90% risetime and full width half maximum time (FWHM) comparison, NCBC and Nucci models have showed compatible comparison. However, Nucci model is not easily adjustable to different desired pulse-current waveshapes. On the other hand, NCBC model can be simplified, the values of lightning peak current and risetime can be chosen arbitrarily and independently from other parameters, and there is no need for the peak-correction factor, so that reduces the number of parameters. Therefore, the NCBC model was suggested to be used in the future in order to simulate much accurate return stroke model. This knowledge will contribute to the development of a new accurate and efficient return stroke model

    Zero-biasing split ring resonator using metamaterial element for high gain superstrates ultra-wideband antenna

    Get PDF
    Complex materials with artificial structures known as metamaterials (MTM) have unique properties that draw several scientists to use them in a variety of research fields. In addition, MTM can go beyond some of the restrictions placed on tools used in technical practise while improving the characteristics of microwaves. The Internet of Things (IoT) application calls for the construction of zero-index Split Ring Resonator (SRR) MTM element superstrates with an ultra-wideband antenna. Keep in mind that the MTM simulates behaviour that is not found in nature, namely the zero-reflection phase (dB) on the resonance frequency. For this project, an antenna with an SRR MTM unit cell operating at 2.70 GHz is built. The SRR has four inductance-related loops (r1, r2, r3, and r4), and gaps (slots) are added to the ring to produce the capacitance effect. Parametric research has been done for the SSR in the interim to identify the best design with zero indexes, permittivity and permeability at the desired frequency. The MTM unit cells array design's 7 x 4 and 10 x 5 dimensions achieved a dB of 0° at the 2.70 GHz frequency range. A 7 x 4 MTM unit cell makes up the first design, MTM Antenna Design 1, which at 2.70 GHz recorded a gain of 5.70 dB and a return loss (S11) of-20.007 dB. The return loss (S11) at a frequency of 2.70 GHz was-19.734 dB in the second design, an MTM antenna consisting of 10 x 5 MTM unit cells, which recorded a gain of 5.66 dB

    Reduced graphene oxide uwb array sensor : High performance for brain tumor imaging and detection

    Get PDF
    A low cost, with high performance, reduced graphene oxide (RGO) Ultra-wide Band (UWB) array sensor is presented to be applied with a technique of confocal radar-based microwave imaging to recognize a tumor in a human brain. RGO is used to form its patches on a Taconic substrate. The sensor functioned in a range of 1.2 to 10.8 GHz under UWB frequency. The sensor demonstrates high gain of 5.2 to 14.5 dB, with the small size of 90 mm × 45 mm2, which can be easily integrated into microwave imaging systems and allow the best functionality. Moreover, the novel UWB RGO array sensor is established as a detector with a phantom of the human head. The layers’ structure represents liquid-imitating tissues that consist of skin, fat, skull, and brain. The sensor will scan nine different points to cover the whole one-sided head phantom to obtain equally distributed reflected signals under two different situations, namely the existence and absence of the tumor. In order to accurately detect the tumor by producing sharper and clearer microwave image, the Matrix Laboratory software is used to improve the microwave imaging algorithm (delay and sum) including summing the imaging algorithm and recording the scattering parameters. The existence of a tumor will produce images with an error that is lower than 2 cm

    5.8 GHz circularly polarized rectangular microstrip antenna arrays simulation for point-to-point application

    Get PDF
    In this paper, the design and simulation of rectangular microstrip antenna arrays for improving antenna gain is performed for point-to-point application. The circular polarization is proposed to restrict the limitation of linear polarization which is less reliable in base station antenna. The circular polarization antenna is made to allow the receiver constantly to receive the power at any wave angle and make the transmission between two antennas are more constant. The proposed design is composed of four elements microstrip antenna with an array configuration operating at 5.8 GHz. Each element is constructed from four truncated arrays radiating elements and an inclined slot on each patch which capable to achieve circular polarized capability. The design of the 2x1 and 2x2 of rectangular microstrip array antenna was implemented from the design of single rectangular patch antenna as the basic building element. The designed 2x1 and 2x2 array were fed by microstrip transmission line which applied a technique of quarter wave impedance matching. The antenna design was etched on Rogers RT 5880 substrate with 2.1 and 1.53 mm of dielectric constant and thickness respectively. All the designed structure were simulated in CST software. The main results of the designed antennas were compared in terms of gain, axial ratio and return loss. Based on the return loss simulation results, the designed antennas resonated exactly at the desired resonant frequency of 5.8 GHz which indicates good antenna designs. Compared to the single patch antenna having an antenna gain of 8.26 dB, the 2x1 and 2x2 arrays achieved a gain of 10.24 dB and 13.29 dB respectively. The results show that the designed rectangular microstrip antenna arrays have an improved gain performance over the single patch antenna

    Modelling Electroluminescence Emission in Polymeric Material Using Dimensional Analysis Method

    Get PDF
    The Electroluminescence (EL) technique has garnered significant interest over time for its reliable outcomes that enrich our understanding of the onset of electrical degradation in polymeric material. There is growing interest in combining both the EL technique and space charge measurement methods to obtain a more profound knowledge of the degradation and ageing of insulation. The generation of charge carriers in polymeric materials is widely acknowledged to be a crucial aspect of EL, involving injection, de-trapping, and field dissociation processes. This research investigates the variables that influence how EL emissions behave, including applied voltage or electric field, applied electrical frequency, ageing of material, and selection of materials and gases employed. It was found that these factors can be helpful in predicting the process of electrical ageing in insulation to avoid any catastrophes that may occur. A mathematical approach relating these factors and the intensity of EL is proposed through the aid of Dimensional Analysis method. A close relationship is obtained that suggests this mathematical approach can be utilised as a tool to predict electrical ageing of insulation material

    A Comparison of Double-End Partial Discharge Localization Algorithms in Power Cables

    No full text
    The double-end partial discharge (PD) measurement method is the most common method for measuring and localizing PD sources in power cables. The sensitivity of the PD sensor, the processing speed of the data acquisition unit, and the method of the PD localization algorithm are the three main keys to ensuring the accuracy of the PD source localization on power cables. A new multi-end PD localization algorithm known as segmented correlation trimmed mean (SCTM) has recently demonstrated excellent accuracy in the localization of PD sources on power cables. The algorithm, however, is only applicable to multi-end PD measurement methods. In this paper, the mathematical equation of the SCTM algorithm is customized to match the double-end PD measurement method. A MATLAB simulation was conducted to assess the performance of the SCTM algorithm in the double-end PD measurement method. The maximum peak detection (MPD) algorithm, segmented correlation (SC), and SCTM algorithm were compared as PD localization algorithms. The SC algorithms have shown that identifying the correlation bond between two cues instead of the peak of the PD signal in the MPD algorithm significantly increases the PD localization accuracy. The results show that the SCTM algorithm outperforms the MPD and SC algorithms in terms of accuracy

    Protection Relay Setting based on Overcurrent Phenomena in Commercial Building

    No full text
    Nowadays, every single distribution system needs to install an appropriate relay to keep the system safe. The operational and commonly recommended relay for distribution systems is the overcurrent (OC) relay. Throughout the distribution system, the protective relay is one of the methods that can detect and protect the location according to its observation from any fault from abnormal activity. Note that time coordination between the protective equipment relay needs to be a minimum of time interruption to prevent faults occurs. The ideal setting for all coordination protection relays is necessary to protect the device against electrical failure and interference. This paper analyzes the real results data collected for the selected commercial building of an OC relay implemented in a distribution board for high voltage and low voltage downward at a commercial building. All the parameters need to be clarified first before testing has been made and measurement is carried out using the MICROTEST 860 set. Based on the analysis, it proves that according to the IEC Standard of 0.10-time multiplier Setting (TMS) is practical to be used to obtain the operation time in seconds for the current curve set. Other than that, the results show that the normal inverse curve from manual calculation results is more accurate compared to the service setting (SS) made based on the incoming setting in a real commercial building. The case study for OC relay setting is related between current injection and time-tripping, which complies with the IEC 60255-3 standard using its formula. This method was applied to determine the characteristics of the curve. Hence, this research successfully determined the proper methods for the OC relay setting for the power distribution system. Besides, the feasibility and efficiency of OC relay data transmission are tested and checked successfully to implement the measurement method in the relay coordination study
    corecore