70 research outputs found

    Why Men Matter: Mating Patterns Drive Evolution of Human Lifespan

    Get PDF
    Evolutionary theory predicts that senescence, a decline in survival rates with age, is the consequence of stronger selection on alleles that affect fertility or mortality earlier rather than later in life. Hamilton quantified this argument by showing that a rare mutation reducing survival is opposed by a selective force that declines with age over reproductive life. He used a female-only demographic model, predicting that female menopause at age ca. 50 yrs should be followed by a sharp increase in mortality, a “wall of death.” Human lives obviously do not display such a wall. Explanations of the evolution of lifespan beyond the age of female menopause have proven difficult to describe as explicit genetic models. Here we argue that the inclusion of males and mating patterns extends Hamilton's theory and predicts the pattern of human senescence. We analyze a general two-sex model to show that selection favors survival for as long as men reproduce. Male fertility can only result from matings with fertile females, and we present a range of data showing that males much older than 50 yrs have substantial realized fertility through matings with younger females, a pattern that was likely typical among early humans. Thus old-age male fertility provides a selective force against autosomal deleterious mutations at ages far past female menopause with no sharp upper age limit, eliminating the wall of death. Our findings illustrate the evolutionary importance of males and mating preferences, and show that one-sex demographic models are insufficient to describe the forces that shape human senescence

    Defining the phenotypes of sickle cell disease.

    Get PDF
    The sickle cell gene is pleiotropic in nature. Although it is a single gene mutation, it has multiple phenotypic expressions that constitute the complications of sickle cell disease. The frequency and severity of these complications vary considerably both latitudinally in patients and longitudinally in the same patient over time. Thus, complications that occur in childhood may disappear, persist or get worse with age. Dactylitis and stroke, for example, occur mostly in childhood, whereas leg ulcers and renal failure typically occur in adults. It is essential that the phenotypic manifestations of sickle cell disease be defined accurately so that communication among providers and researchers facilitates the implementation of appropriate and cost-effective diagnostic and therapeutic modalities. The aim of this review is to define the complications that are specific to sickle cell disease based on available evidence in the literature and the experience of hematologists in this field

    Prevalence, Causes and Socio-Economic Determinants of Vision Loss in Cape Town, South Africa

    Get PDF
    PURPOSE: To estimate the prevalence and causes of blindness and visual impairment in Cape Town, South Africa and to explore socio-economic and demographic predictors of vision loss in this setting. METHODS: A cross sectional population-based survey was conducted in Cape Town. Eighty-two clusters were selected using probability proportionate to size sampling. Within each cluster 35 or 40 people aged 50 years and above were selected using compact segment sampling. Visual acuity of participants was assessed and eyes with a visual acuity less than 6/18 were examined by an ophthalmologist to determine the cause of vision loss. Demographic data (age, gender and education) were collected and a socio-economic status (SES) index was created using principal components analysis. RESULTS: Out of 3100 eligible people, 2750 (89%) were examined. The sample prevalence of bilateral blindness (presenting visual acuity <3/60) was 1.4% (95% CI 0.9-1.8). Posterior segment diseases accounted for 65% of blindness and cataract was responsible for 27%. The prevalence of vision loss was highest among people over 80 years (odds ratio (OR) 6.9 95% CI 4.6-10.6), those in the poorest SES group (OR 3.9 95% CI 2.2-6.7) and people with no formal education (OR 5.4 95% CI 1.7-16.6). Cataract surgical coverage was 68% in the poorest SES tertile (68%) compared to 93% in the medium and 100% in the highest tertile. CONCLUSIONS: The prevalence of blindness among people ≥50 years in Cape Town was lower than expected and the contribution of posterior segment diseases higher than previously reported in South Africa and Sub Saharan Africa. There were clear socio-economic disparities in prevalence of vision loss and cataract surgical coverage in this setting which need to be addressed in blindness prevention programs

    C-Terminus Glycans with Critical Functional Role in the Maturation of Secretory Glycoproteins

    Get PDF
    The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs - one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I

    Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    Get PDF
    Citation: Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. Plos Pathogens, 12(1), 28. doi:10.1371/journal.ppat.1005404Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems

    Intestinal strongyloidiasis and hyperinfection syndrome

    Get PDF
    In spite of recent advances with experiments on animal models, strongyloidiasis, an infection caused by the nematode parasite Strongyloides stercoralis, has still been an elusive disease. Though endemic in some developing countries, strongyloidiasis still poses a threat to the developed world. Due to the peculiar but characteristic features of autoinfection, hyperinfection syndrome involving only pulmonary and gastrointestinal systems, and disseminated infection with involvement of other organs, strongyloidiasis needs special attention by the physician, especially one serving patients in areas endemic for strongyloidiasis. Strongyloidiasis can occur without any symptoms, or as a potentially fatal hyperinfection or disseminated infection. Th(2 )cell-mediated immunity, humoral immunity and mucosal immunity have been shown to have protective effects against this parasitic infection especially in animal models. Any factors that suppress these mechanisms (such as intercurrent immune suppression or glucocorticoid therapy) could potentially trigger hyperinfection or disseminated infection which could be fatal. Even with the recent advances in laboratory tests, strongyloidiasis is still difficult to diagnose. But once diagnosed, the disease can be treated effectively with antihelminthic drugs like Ivermectin. This review article summarizes a case of strongyloidiasis and various aspects of strongyloidiasis, with emphasis on epidemiology, life cycle of Strongyloides stercoralis, clinical manifestations of the disease, corticosteroids and strongyloidiasis, diagnostic aspects of the disease, various host defense pathways against strongyloidiasis, and available treatment options

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the <it>An. gambiae </it>complex. <it>Anopheles gambiae </it>is one of four DVS within the <it>An. gambiae </it>complex, the others being <it>An. arabiensis </it>and the coastal <it>An. merus </it>and <it>An. melas</it>. There are a further three, highly anthropophilic DVS in Africa, <it>An. funestus</it>, <it>An. moucheti </it>and <it>An. nili</it>. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.</p> <p>Results</p> <p>A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.</p> <p>Conclusions</p> <p>The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: <it>Anopheles </it>(<it>Cellia</it>) <it>arabiensis</it>, <it>An. </it>(<it>Cel.</it>) <it>funestus*</it>, <it>An. </it>(<it>Cel.</it>) <it>gambiae</it>, <it>An. </it>(<it>Cel.</it>) <it>melas</it>, <it>An. </it>(<it>Cel.</it>) <it>merus</it>, <it>An. </it>(<it>Cel.</it>) <it>moucheti </it>and <it>An. </it>(<it>Cel.</it>) <it>nili*</it>, and in the European and Middle Eastern Region: <it>An. </it>(<it>Anopheles</it>) <it>atroparvus</it>, <it>An. </it>(<it>Ano.</it>) <it>labranchiae</it>, <it>An. </it>(<it>Ano.</it>) <it>messeae</it>, <it>An. </it>(<it>Ano.</it>) <it>sacharovi</it>, <it>An. </it>(<it>Cel.</it>) <it>sergentii </it>and <it>An. </it>(<it>Cel.</it>) <it>superpictus*</it>. These maps are presented alongside a bionomics summary for each species relevant to its control.</p
    corecore