571 research outputs found

    The super-oscillating superlens

    No full text
    We demonstrate a lens that creates a sub-wavelength focal spot beyond the near-field by exploiting the phenomenon of super-oscillation

    Constraining Gaussian processes for physics-informed acoustic emission mapping

    Get PDF
    The automated localisation of damage in structures is a challenging but critical ingredient in the path towards predictive or condition-based maintenance of high value structures. The use of acoustic emission time of arrival mapping is a promising approach to this challenge, but is severely hindered by the need to collect a dense set of artificial acoustic emission measurements across the structure, resulting in a lengthy and often impractical data acquisition process. In this paper, we consider the use of physics-informed Gaussian processes for learning these maps to alleviate this problem. In the approach, the Gaussian process is constrained to the physical domain such that information relating to the geometry and boundary conditions of the structure are embedded directly into the learning process, returning a model that guarantees that any predictions made satisfy physically-consistent behaviour at the boundary. A number of scenarios that arise when training measurement acquisition is limited, including where training data are sparse, and also of limited coverage over the structure of interest. Using a complex plate-like structure as an experimental case study, we show that our approach significantly reduces the burden of data collection, where it is seen that incorporation of boundary condition knowledge significantly improves predictive accuracy as training observations are reduced, particularly when training measurements are not available across all parts of the structure

    In-situ velocity imaging of ultracold atoms using slow--light

    Full text link
    The optical response of a moving medium suitably driven into a slow-light propagation regime strongly depends on its velocity. This effect can be used to devise a novel scheme for imaging ultraslow velocity fields. The scheme turns out to be particularly amenable to study in-situ the dynamics of collective and topological excitations of a trapped Bose-Einstein condensate. We illustrate the advantages of using slow-light imaging specifically for sloshing oscillations and bent vortices in a stirred condensate

    A Bayesian methodology for localising acoustic emission sources in complex structures

    Get PDF
    In the field of structural health monitoring (SHM), the acquisition of acoustic emissions to localise damage sources has emerged as a popular approach. Despite recent advances, the task of locating damage within composite materials and structures that contain non-trivial geometrical features, still poses a significant challenge. Within this paper, a Bayesian source localisation strategy that is robust to these complexities is presented. Under this new framework, a Gaussian process is first used to learn the relationship between source locations and the corresponding difference-in-time-of-arrival values for a number of sensor pairings. As an acoustic emission event with an unknown origin is observed, a mapping is then generated that quantifies the likelihood of the emission location across the surface of the structure. The new probabilistic mapping offers multiple benefits, leading to a localisation strategy that is more informative than deterministic predictions or single-point estimates with an associated confidence bound. The performance of the approach is investigated on a structure with numerous complex geometrical features and demonstrates a favourable performance in comparison to other similar localisation methods

    ACCERT: Auckland's cancer cachexia evaluating resistance training study

    Get PDF
    Background: Cancer Cachexia (CC) is a common problem seen in many advanced malignancies including Non- Small-Cell Lung Cancer (NSCLC). In CC there is a significant loss of adipose tissue and skeletal muscle mass. Muscle wasting is the main cause of impaired function, leading to respiratory complications and fatigue. The optimal treatment for CC is the complete removal of the tumour; unfortunately with advanced NSCLC this is unachievable. The next best options are to increase nutritional intake to counteract weight loss, address the anorexia, inflammation, and metabolic alterations i.e. loss of body fat and the skeletal muscle wasting. This requires the need to utilise a multi-targeted approach to decrease the inflammation and to stimulate the skeletal anabolic pathways with the use of progressive resistance training (PRT). PRT has shown acceptability and benefits in other cancer populations. This study aims to identify a novel multi-targeted treatment regimen that will alleviate and/or stabilise CC weight loss. Methods: This is a randomised, open-label study to investigate whether 2 sessions each week of PRT followed by essential amino acids (EAA's) high in leucine, when administered in addition to Eicosapentaenoic Acid (EPA) and a Cox-2 inhibitor is acceptable to NSCLC cachectic patients for a period of 20 weeks (primary endpoint). Secondary endpoints include Lean Body Mass, MRI thigh skeletal muscle values, QoL and Fatigue questionnaires, serum pro-inflammatory cytokine profiles, and hand and leg strength. Safety data will also be collected. Outcome measures to power a future study will be determined from the trend in difference between the two groups. 21 patients are planned to be randomised in a 1:2 ratio Arm A EPA and Cox-2 inhibitor vs. Arm B EPA, Cox-2 inhibitor, PRT followed by EAA's. All patients are offered to continue with the study medications and/or PRT sessions on compassionate use. Main inclusion criteria include: histological proven NSCLC patients who have at least 5% weight loss and fulfil the following cachectic definition (Evans Clin Nut 2008 27). A guest patient was enrolled in May 2012, followed by study participants in June 201

    The impact of deep-sea fisheries and implementation of the UNGA Resolutions 61/105 and 64/72. Report of an international scientific workshop

    Get PDF
    The scientific workshop to review fisheries management, held in Lisbon in May 2011, brought together 22 scientists and fisheries experts from around the world to consider the United Nations General Assembly (UNGA) resolutions on high seas bottom fisheries: what progress has been made and what the outstanding issues are. This report summarises the workshop conclusions, identifying examples of good practice and making recommendations in areas where it was agreed that the current management measures fall short of their target

    Physically meaningful uncertainty quantification in probabilistic wind turbine power curve models as a damage-sensitive feature

    Get PDF
    A wind turbines’ power curve is an easily accessible form of damage-sensitive data, and as such is a key part of structural health monitoring (SHM) in wind turbines. Power curve models can be constructed in a number of ways, but the authors argue that probabilistic methods carry inherent benefits in this use case, such as uncertainty quantification and allowing uncertainty propagation analysis. Many probabilistic power curve models have a key limitation in that they are not physically meaningful – they return mean and uncertainty predictions outside of what is physically possible (the maximum and minimum power outputs of the wind turbine). This paper investigates the use of two bounded Gaussian processes (GPs) in order to produce physically meaningful probabilistic power curve models. The first model investigated was a warped heteroscedastic Gaussian process, and was found to be ineffective due to specific shortcomings of the GP in relation to the warping function. The second model – an approximated GP with a Beta likelihood was highly successful and demonstrated that a working bounded probabilistic model results in better predictive uncertainty than a corresponding unbounded one without meaningful loss in predictive accuracy. Such a bounded model thus offers increased accuracy for performance monitoring and increased operator confidence in the model due to guaranteed physical plausibility

    Wide and ultra-wide bandgap oxides : where paradigm-shift photovoltaics meets transparent power electronics

    Get PDF
    Oxides represent the largest family of wide bandgap (WBG) semiconductors and also offer a huge potential range of complementary magnetic and electronic properties, such as ferromagnetism, ferroelectricity, antiferroelectricity and high-temperature superconductivity. Here, we review our integration of WBG and ultra WBG semiconductor oxides into different solar cells architectures where they have the role of transparent conductive electrodes and/or barriers bringing unique functionalities into the structure such above bandgap voltages or switchable interfaces. We also give an overview of the state-of-the-art and perspectives for the emerging semiconductor β- GaO, which is widely forecast to herald the next generation of power electronic converters because of the combination of an UWBG with the capacity to conduct electricity. This opens unprecedented possibilities for the monolithic integration in solar cells of both self-powered logic and power electronics functionalities. Therefore, WBG and UWBG oxides have enormous promise to become key enabling technologies for the zero emissions smart integration of the internet of things

    Boundary driven zero-range processes in random media

    Full text link
    The stationary states of boundary driven zero-range processes in random media with quenched disorder are examined, and the motion of a tagged particle is analyzed. For symmetric transition rates, also known as the random barrier model, the stationary state is found to be trivial in absence of boundary drive. Out of equilibrium, two further cases are distinguished according to the tail of the disorder distribution. For strong disorder, the fugacity profiles are found to be governed by the paths of normalized α\alpha-stable subordinators. The expectations of integrated functions of the tagged particle position are calculated for three types of routes.Comment: 23 page

    Simple Fluids with Complex Phase Behavior

    Full text link
    We find that a system of particles interacting through a simple isotropic potential with a softened core is able to exhibit a rich phase behavior including: a liquid-liquid phase transition in the supercooled phase, as has been suggested for water; a gas-liquid-liquid triple point; a freezing line with anomalous reentrant behavior. The essential ingredient leading to these features resides in that the potential investigated gives origin to two effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur
    • …
    corecore