437 research outputs found

    Postsynaptic Ca2+, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda

    Get PDF
    The neuronal modifications that underlie associative memory in Hermissenda have their origins in a synaptic interaction between the visual and vestibular systems, and can be mimicked by contiguous in vitro stimulation of these converging pathways. At the offset of vestibular stimulation (i.e., hair cell activity), the B photoreceptors are briefly released from synaptic inhibition resulting in a slight depolarization (2–4 mV). If contiguous pairings of light-induced depolarization and presynaptic vestibular activity occur in close temporal succession, this depolarization “accumulates” and has been hypothesized to culminate in a sustained rise in intracellular Ca2+ and a resultant Ca(2+)-mediated phosphorylation of K+ channels as well as an associated increase in input resistance. Here we demonstrate that this cumulative depolarization is neither necessary nor sufficient for the biophysical modifications of the B cell membrane indicative of memory formation. Consistent with several recent reports of one-trial learning in Hermissenda, one pairing of light with mechanical stimulation of the vestibular hair cells resulted in a rise in neuronal input resistance across the B cell membrane that was attenuated by a prepairing iontophoretic injection of the Ca2+ chelator EGTA (25 mM), indicating that this potentiation was Ca2+ dependent. However, the use of a single pairing negates the possibility of an accumulation of depolarization across trials. In a subsequent experiment, B photoreceptors underwent a cumulative depolarization, and a coincident rise in input resistance, during multiple pairings of light and hair cell stimulation. However, if the B photoreceptor was voltage clamped at its initial resting potential before and after each pairing, thus eliminating the cumulative depolarization, the rise in resistance not only persisted, but was enhanced. Moreover, if unpaired light presentations were followed by a current-induced depolarization (to mimic cumulative depolarization), no increase in input resistance was detected. To assess directly the effect of a cumulative depolarization on the voltage-dependent Ca2+ current, an analysis of the inward current on the B cell soma membrane was conducted. It was determined that (1) the inward current may undergo a partial inactivation during sustained depolarization, (2) the peak current was depressed during repetitive depolarizations, and (3) the peak current underwent a steady- state inactivation, such that it was reduced when elicited from holding potentials more positive than -60 mV. The analysis of this current suggests that pairings of light and presynaptic activity would reduce voltage-dependent Ca2+ influx when those pairings are conducted at depolarized membrane potentials, such as during cumulative depolarization

    Higher-order associative processing in Hermissenda suggests multiple sites of neuronal modulation.

    Get PDF
    Two important features of modern accounts of associative learning are (1) the capacity for contextual stimuli to serve as a signal for an unconditioned stimulus (US) and (2) the capacity for a previously conditioned (excitatory) stimulus to block learning about a redundant stimulus when both stimuli serve as a signal for the same US. Here, we examined the process of blocking, thought by some to reflect a cognitive aspect of classical conditioning, and its underlying mechanisms in the marine mollusc Hermissenda. In two behavioral experiments, a context defined by chemosensory stimuli was made excitatory by presenting unsignalled USs (rotation) in that context. The excitatory context subsequently blocked overt learning about a discrete conditioned stimulus (CS; light) paired with the US in that context. In a third experiment, the excitability of the B photoreceptors in the Hermissenda eye, which typically increases following light-rotation pairings, was examined in behaviorally blocked animals, as well as in animals that had acquired a normal CS-US association or animals that had been exposed to the CS and US unpaired. Both the behaviorally blocked and the normal learning groups exhibited increases in neuronal excitability relative to unpaired animals. However, light-induced multiunit activity in pedal nerves was suppressed following normal conditioning but not in blocked or unpaired control animals, suggesting that the expression of blocking is mediated by neuronal modifications not directly reflected in B-cell excitability, possibly within an extensive network of central light-responsive interneurons

    Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence

    Get PDF
    A recent paper by Daubechies et al. claims that two independent component analysis (ICA) algorithms, Infomax and FastICA, which are widely used for functional magnetic resonance imaging (fMRI) analysis, select for sparsity rather than independence. The argument was supported by a series of experiments on synthetic data. We show that these experiments fall short of proving this claim and that the ICA algorithms are indeed doing what they are designed to do: identify maximally independent sources

    Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond

    Full text link
    We investigate spin-dependent decay and intersystem crossing in the optical cycle of single negatively-charged nitrogen-vacancy (NV) centres in diamond. We use spin control and pulsed optical excitation to extract both the spin-resolved lifetimes of the excited states and the degree of optically-induced spin polarization. By optically exciting the centre with a series of picosecond pulses, we determine the spin-flip probabilities per optical cycle, as well as the spin-dependent probability for intersystem crossing. This information, together with the indepedently measured decay rate of singlet population provides a full description of spin dynamics in the optical cycle of NV centres. The temperature dependence of the singlet population decay rate provides information on the number of singlet states involved in the optical cycle.Comment: 11 pages, 5 figure

    Laplace approximation of Lauricella functions F A and F D

    Get PDF
    The Lauricella functions, which are generalizations of the Gauss hypergeometric function 2 F 1, arise naturally in many areas of mathematics and statistics. So far as we are aware, there is little or nothing in the literature on how to calculate numerical approximations for these functions outside those cases in which a simple one-dimensional integral representation or a one-dimensional series representation is available. In this paper we present first-order and second-order Laplace approximations to the Lauricella functions F(n)A and F(n)D. Our extensive numerical results show that these approximations achieve surprisingly good accuracy in a wide variety of examples, including cases well outside the asymptotic framework within which the approximations were derived. Moreover, it turns out that the second-order Laplace approximations are usually more accurate than their first-order versions. The numerical results are complemented by theoretical investigations which suggest that the approximations have good relative error properties outside the asymptotic regimes within which they were derived, including in certain cases where the dimension n goes to infinity

    Numerical Study of a Field Theory for Directed Percolation

    Full text link
    A numerical method is devised for study of stochastic partial differential equations describing directed percolation, the contact process, and other models with a continuous transition to an absorbing state. Owing to the heightened sensitivity to fluctuationsattending multiplicative noise in the vicinity of an absorbing state, a useful method requires discretization of the field variable as well as of space and time. When applied to the field theory for directed percolation in 1+1 dimensions, the method yields critical exponents which compare well against accepted values.Comment: 18 pages, LaTeX, 6 figures available upon request LC-CM-94-00

    Kepler-68: Three Planets, One With a Density Between That of Earth and Ice Giants

    Full text link
    NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68. Follow-up Doppler measurements have established the mass of the innermost planet and revealed a third jovian-mass planet orbiting beyond the two transiting planets. Kepler-68b, in a 5.4 day orbit has mass 8.3 +/- 2.3 Earth, radius 2.31 +/- 0.07 Earth radii, and a density of 3.32 +/- 0.92 (cgs), giving Kepler-68b a density intermediate between that of the ice giants and Earth. Kepler-68c is Earth-sized with a radius of 0.953 Earth and transits on a 9.6 day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an orbital period of 580 +/- 15 days and minimum mass of Msin(i) = 0.947 Jupiter. Power spectra of the Kepler photometry at 1-minute cadence exhibit a rich and strong set of asteroseismic pulsation modes enabling detailed analysis of the stellar interior. Spectroscopy of the star coupled with asteroseismic modeling of the multiple pulsation modes yield precise measurements of stellar properties, notably Teff = 5793 +/- 74 K, M = 1.079 +/- 0.051 Msun, R = 1.243 +/- 0.019 Rsun, and density 0.7903 +/- 0.0054 (cgs), all measured with fractional uncertainties of only a few percent. Models of Kepler-68b suggest it is likely composed of rock and water, or has a H and He envelope to yield its density of about 3 (cgs).Comment: 32 pages, 13 figures, Accepted to Ap

    LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    Get PDF
    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant AST-0908884)National Science Foundation (U.S.) (Grant PHY-0835713)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc

    The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    Get PDF
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.National Science Foundation (U.S.) (Grant AST CAREER-0847753)National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant AST-0908884)National Science Foundation (U.S.) (Grant PHY-0835713)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc

    The giant lobes of Centaurus A observed at 118 MHz with the Murchison Widefield Array

    Get PDF
    We present new wide-field observations of Centaurus A (Cen A) and the surrounding region at 118 MHz with the Murchison Widefield Array (MWA) 32-tile prototype, with which we investigate the spectral-index distribution of Cen A's giant radio lobes. We compare our images to 1.4 GHz maps of Cen A and compute spectral indices using temperature–temperature plots and spectral tomography. We find that the morphologies at 118 MHz and 1.4 GHz match very closely apart from an extra peak in the southern lobe at 118 MHz, which provides tentative evidence for the existence of a southern counterpart to the northern middle lobe of Cen A. Our spatially averaged spectral indices for both the northern and southern lobes are consistent with previous analyses, however we find significant spatial variation of the spectra across the extent of each lobe. Both the spectral-index distribution and the morphology at low radio frequencies support a scenario of multiple outbursts of activity from the central engine. Our results are consistent with inverse-Compton modelling of radio and gamma-ray data that support a value for the lobe age of between 10 and 80 Myr.National Science Foundation (U.S.) (Grant AST-0457585)National Science Foundation (U.S.) (Grant PHY-0835713)National Science Foundation (U.S.) (Grant CAREER-0847753)National Science Foundation (U.S.) (Grant AST-0908884)United States. Air Force Office of Scientific Research (Grant FA9550-0510247)Smithsonian Astrophysical ObservatoryMIT School of Scienc
    • …
    corecore