583 research outputs found

    Old and New Fields on Super Riemann Surfaces

    Get PDF
    The ``new fields" or ``superconformal functions" on N=1N=1 super Riemann surfaces introduced recently by Rogers and Langer are shown to coincide with the Abelian differentials (plus constants), viewed as a subset of the functions on the associated N=2N=2 super Riemann surface. We confirm that, as originally defined, they do not form a super vector space.Comment: 9 pages, LaTex. Published version: minor changes for clarity, two new reference

    Universality in the one-dimensional chain of phase-coupled oscillators

    Get PDF
    We apply a recently developed renormalization group (RG) method to study synchronization in a one-dimensional chain of phase-coupled oscillators in the regime of weak randomness. The RG predicts how oscillators with randomly distributed frequencies and couplings form frequency-synchronized clusters. Although the RG was originally intended for strong randomness, i.e. for distributions with long tails, we find good agreement with numerical simulations even in the regime of weak randomness. We use the RG flow to derive how the correlation length scales with the width of the coupling distribution in the limit of large coupling. This leads to the identification of a universality class of distributions with the same critical exponent ν\nu. We also find universal scaling for small coupling. Finally, we show that the RG flow is characterized by a universal approach to the unsynchronized fixed point, which provides physical insight into low-frequency clusters.Comment: 14 pages, 10 figure

    Feasibility Study of Compton Scattering Enchanced Multiple Pinhole Imager for Nuclear Medicine

    Full text link
    This paper presents a feasibility study of a Compton scattering enhanced (CSE) multiple pinhole imaging system for gamma rays with energy of 140 keV or higher. This system consists of a multiple-pinhole collimator, a position sensitive scintillation detector as used in a standard gamma camera, and a Si pad detector array, inserted between the collimator and the scintillation detector. The problem of multiplexing, normally associated with multiple pinhole system, is reduced by using the extra information from the detected Compton scattering events. In order to compensate for the sensitivity loss, due to the low probability of detecting Compton scattered events, the proposed detector is designed to collect both Compton scattering and non-Compton events. It has been shown that with properly selected pinhole spacing, the proposed detector design leads to an improved image quality.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86012/1/Fessler64.pd

    Improved Modeling of System Response in List Mode EM Reconstruction of Compton Scatter Camera Images

    Full text link
    An improved List Mode EM method for reconstructing Compton scattering camera images has been developed. First, an approximate method for computation of the spatial variation in the detector sensitivity has been derived and validated by Monte Carlo computation. A technique for estimating the relative weight of system matrix coefficients for each gamma in the list has also been employed, as has a method for determining the relative probabilities of emission having come from pixels tallied in each list-mode back-projection. Finally, a technique has been developed for modeling the effects of Doppler broadening and finite detector energy resolution on the relative weights for pixels neighbor to those intersected by the back-projection, based on values for the FWHM of the spread in the cone angle computed by Monte Carlo. Memory issues typically associated with list mode reconstruction are circumvented by storing only a list of the pixels intersected by the back-projections, and computing the weights of the neighboring pixels at each iteration step. Reconstructions have been performed on experimental data for both point and distributed sourcesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86026/1/Fessler77.pd

    Time to revisit the passive overconsumption hypothesis?:Humans show sensitivity to calories in energy-rich meals

    Get PDF
    BACKGROUND: A possible driver of obesity is insensitivity (passive overconsumption) to food energy density (ED, kcal/g); however, it is unclear whether this insensitivity applies to all meals. OBJECTIVES: We assessed the influence of ED on energy intake (kcal) across a broad and continuous range of EDs comprised of noncovertly manipulated, real-world meals. We also allowed for the possibility that the association between energy intake and ED is nonlinear. METHODS: We completed a secondary analysis of 1519 meals which occurred in a controlled environment as part of a study conducted by Hall and colleagues to assess the effects of food ultra-processing on energy intake. To establish the generalizability of the findings, the analyses were repeated in 32,162 meals collected from free-living humans using data from the UK National Diet and Nutrition Survey (NDNS). Segmented regressions were performed to establish ED “breakpoints” at which the association between consumed meal ED and mean centered meal caloric intake (kcal) changed. RESULTS: Significant breakpoints were found in both the Hall et al. data set (1.41 kcal/g) and the NDNS data set (1.75 and 2.94 kcal/g). Centered meal caloric intake did not increase linearly with consumed meal ED, and this pattern was captured by a 2-component (“volume” and “calorie content” [biologically derived from the sensing of fat, carbohydrate, and protein]) model of physical meal size (g), in which volume is the dominant signal with lower energy-dense foods and calorie content is the dominant signal with higher energy-dense foods. CONCLUSIONS: These analyses reveal that, on some level, humans are sensitive to the energy content of meals and adjust meal size to minimize the acute aversive effects of overconsumption. Future research should consider the relative importance of volume and calorie-content signals, and how individual differences impact everyday dietary behavior and energy balance

    Preliminary Studies on the Feasibility of Addition of Vertex View to Conventional Brain SPECT

    Full text link
    We have investigated the improvement in resolution and sensitivity for brain imaging which would result by the addition of a single stationary vertex view to the tomographic data. This method has the practical advantage of being relatively inexpensive and easy to implement. The uniform Cramer Rao bound is a plot of the minimum achievable standard deviation for estimating the pixel intensity as a function of the bias gradient length. Uniform CR bound analysis indicated an improvement in performance when the vertex detector is added, especially for centrally located pixels for which improvement is seen over the useful depth for brain imaging. Simulation experiments were done with a simple six slice phantom and with the Hoffman brain phantom. Visual inspection of the reconstructed images showed improved resolution and noise characteristics over reconstructed images without the vertex data. Quantitatively, substantial reduction in mean square error was observed for a plane close to the vertex detector. Improvement reduced as distance from the vertex detector is increased. Background activities inside the field of view of the vertex detector but not the tomograph were represented by several blobs of activity on a plane lying outside the reconstruction volume. This activity was estimated by 3D spline fitting jointly with the image reconstruction process. Adding the vertex view to conventional brain SPECT should lead to improved cortical imaging, and to moderate improvement for deep structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85857/1/Fessler142.pd

    Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates

    Get PDF
    We present the discovery of the Kepler-20 planetary system, which we initially identified through the detection of five distinct periodic transit signals in the Kepler light curve of the host star 2MASSJ19104752+4220194. We find a stellar effective temperature Teff=5455+-100K, a metallicity of [Fe/H]=0.01+-0.04, and a surface gravity of log(g)=4.4+-0.1. Combined with an estimate of the stellar density from the transit light curves we deduce a stellar mass of Mstar=0.912+-0.034 Msun and a stellar radius of Rstar=0.944^{+0.060}_{-0.095} Rsun. For three of the transit signals, our results strongly disfavor the possibility that these result from astrophysical false positives. We conclude that the planetary scenario is more likely than that of an astrophysical false positive by a factor of 2e5 (Kepler-20b), 1e5 (Kepler-20c), and 1.1e3 (Kepler-20d), sufficient to validate these objects as planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is independently disfavored by the achromaticity of the transit: From Spitzer data gathered at 4.5um, we infer a ratio of the planetary to stellar radii of 0.075+-0.015 (Kepler-20c) and 0.065+-0.011 (Kepler-20d), consistent with each of the depths measured in the Kepler optical bandpass. We determine the orbital periods and physical radii of the three confirmed planets to be 3.70d and 1.91^{+0.12}_{-0.21} Rearth for Kepler-20b, 10.85 d and 3.07^{+0.20}_{-0.31} Rearth for Kepelr-20c, and 77.61 d and 2.75^{+0.17}_{-0.30} Rearth for Kepler-20d. From multi-epoch radial velocities, we determine the masses of Kepler-20b and Kepler-20c to be 8.7\+-2.2 Mearth and 16.1+-3.5 Mearth, respectively, and we place an upper limit on the mass of Kepler-20d of 20.1 Mearth (2 sigma).Comment: accepted by ApJ, 58 pages, 12 figures revised Jan 2012 to correct table 2 and clarify planet parameter extractio
    • …
    corecore