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Abstract
The “new fields” or “superconformal functions” on N = 1 super

Riemann surfaces introduced recently by Rogers and Langer are shown
to coincide with the Abelian differentials (plus constants), viewed as
a subset of the functions on the associated N = 2 super Riemann
surface. We confirm that, as originally defined, they do not form a
super vector space.

It has been known for some time that the globally defined holomorphic
functions on a generic super Riemann surface (SRS) with odd spin structure
do not form a super vector space [1]. Neither do the holomorphic supercon-
formal tensors of weights −1 through 2 [2]. That is, one cannot uniquely
express an arbitrary tensor as a linear combination of some small basis set.
The proposed “basis” inevitably contains nilpotent tensors which are an-
nihilated by some elements of the set of constant Grassmann parameters
(exterior algebra) Λ. Therefore linear combinations with coefficients from Λ
cannot be unique. This is a special case of the general fact that sheaf coho-
mology groups H i(M,F) of complex supermanifolds over Λ are Λ-modules,
but these modules are not necessarily free. In comparison with the theory
of Riemann surfaces used in bosonic string theory, this complicates the dis-
cussion of period matrices, Jacobian varieties, functional determinants, and
other ingredients in the construction of superstring amplitudes [3].
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Recently, Rogers and Langer introduced a notion of “superconformal
functions” on a SRS with the intent of overcoming these difficulties [4]. These
are a certain subset SC of the holomorphic sections of a rank (1, 1) super vec-
tor bundle E over the SRS. On the basis of a direct but very complicated
calculation, the module of global superconformal functions H0(M,SC) was
claimed to be free, that is, a super vector space. Subsequently, an error in
the calculation was corrected, with the result that H0(M,SC) is not free but
a free submodule can be picked out by imposing an additional condition on
the sections [5]. In this paper we will give a geometric interpretation of SC
leading to a simpler verification of these facts.

One can associate to every N = 1 SRS, indeed to every complex super-
manifold M of dimension (1, 1), or “supercurve”, an N = 2 (untwisted) SRS
M2 [6]. This correspondence is generically two-to-one, so that each super-
curve M has a dual supercurve M̂ with the same associated M2. SRSs can
be characterized by the property of self-duality: M = M̂ iff M is a SRS [7].
We will see that contour integration theory on N = 2 SRSs [8] makes it pos-
sible to integrate Abelian differentials (tensors of weight 1) on M to obtain
functions on M2. The super vector bundle E will be shown to be precisely
the sheaf of functions O2 on M2, and SC will be that subsheaf obtained by
integrating Abelian differentials on M . In fact, O2 splits as a sheaf into the
direct sum of the Abelian differentials K and the functions O on M . In terms
of this splitting, SC consists of K plus integration constants from O. Since
the global Abelian differentials on M do not form a super vector space [2, 3],
we confirm that the global superconformal functions (as originally defined)
do not either.

We will be rather casual about supermanifold theory in this paper. The
reader can think of Rogers [9] or DeWitt [10] supermanifolds (topologically
vector bundles over their bodies) over a finite- or infinite-dimensional com-
plex Grassmann algebra Λ with generators ηi, i = 1, 2, . . . , L in the finite-
dimensional case, or of families of sheaf-theoretic supermanifolds [11] over the
parameter superspace (point,Λ). All that matters is that the various sheaves
and cohomology groups considered are Λ-modules; linear combinations are
taken with Λ coefficients.

Let M be a supercurve, covered by charts Uα, with transition functions

zβ = Fβα(zα, θα), θβ = Ψβα(zα, θα) (1)
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in Uα ∩ Uβ. The associated split supercurve Msplit is obtained by setting to
zero the generators ηi of Λ in the transition functions. The body or reduced
space Mred is obtained by dropping θ as well. We denote by K the canonical
bundle of M , the line bundle having transition functions k−1

βα , where

kβα = sdet

[
∂zFβα ∂zΨβα

∂θFβα ∂θΨβα

]
. (2)

Its sections will be called Abelian differentials. The associated N = 2 SRS
M2 has coordinates (z, θ, ρ) with the transition functions [6, 7]

zβ = Fβα(zα, θα), θβ = Ψβα(zα, θα), ρβ = ραkβα(zα, θα) + φβα(zα), (3)

where

φβα =
∂θFβα

∂θΨβα
. (4)

The sheaf of functions O2 on M2 is then an extension of K by the sheaf O
of functions on M ; there is an exact sequence

0 −→ O inc−→ O2
D+−→ K −→ 0, (5)

where D+ = ∂ρ. That is, the (local) functions on M2 include the functions
on M as those which do not depend on ρ, whereas the coefficient of ρ in
a function on M2 transforms as a section of K. The compatibility of the
transition functions imposes the following cocycle relation on φβα:

φγα(zα) = φγβ(zβ) + kγβ(zβ , θβ)φβα(zα). (6)

This is the cocycle in H1(M,K−1) which classifies extensions of the form (5).
If a function G(z, θ, ρ) on M2 is written in the form g(z, θ) − ργ(z, θ), then
the pair (g, γ) transforms as

[
gβ

γβ

]
=

[
1 k−1

βαφβα

0 k−1
βα

] [
gα

γα

]
, (7)

i.e., as a section of a rank (1, 1) vector bundle E over M . (A.S. Schwarz
has informed me that the equivalence between O2 and E has been observed
previously [12].) If the extension cocycle φβα vanishes, this reduces to the
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direct sum of line bundles O ⊕ K. If the cocycle is cohomologically trivial,
meaning

φβα = σβ − kβασα (8)

for some functions σα(zα, θα) on Uα, then the change of coordinates

ρ̃α = ρα − σα(zα, θα) (9)

induces a change of basis (g, γ) → (g − σγ, γ) in the fibers of E which again
reduces it to O ⊕ K. We will show below that this cocycle is always trivial
when M is a SRS.

The correspondence between supercurves M and N = 2 SRSs is generi-
cally two-to-one; there is a dual curve M̂ yielding the same M2. To construct
it, introduce in each chart the new coordinate u = z − θρ. One finds that
(u, ρ) then transform independently of θ, so they patch together as coordi-
nates for another supercurve, M̂ . Its transition functions are

uβ = F̂βα(uα, ρα), ρβ = Ψ̂βα(uα, ρα), (10)

where

F̂ = F +
DF

DΨ
Ψ, Ψ̂ =

DF

DΨ
, (11)

and as usual D = ∂θ + θ∂z . The exact sequence analogous to (5) is

0 −→ Ô inc−→ O2
D−−→ K̂ −→ 0, (12)

where D− = ∂θ + ρ∂z. These operators D± are the usual superconformal
derivatives on an N = 2 SRS, satisfying (D±)2 = 0, {D+, D−} = ∂z . How-
ever, (z, θ, ρ) are coordinates adapted to the projection M2 → M rather than
the customary superconformal coordinates [which are (z − 1

2
θρ, θ, ρ)].

Contour integration theory on an N = 2 SRS takes the following form
[8]. The derivative of a function G is defined to be the pair D+G ⊕ D−G,
which is a section of K⊕K̂. Conversely, an antiderivative G of such a section
ω⊕ ω̂ always exists locally and is unique up to a constant. In coordinates, if
G = a+ θα− ρ(β + θb), then

D+G⊕D−G = (−β − θb)⊕ [α + ρ(a′ + b+ θα′)].

= [−β(z)− θb(z)] ⊕ [α(u) + ρa′(u) + ρb(u)]. (13)
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In finding an antiderivative, α, β, and b can be read off directly, and the only
actual integration required is in finding a from a′. The definite (contour)
integral

∫ P
P0
ω ⊕ ω̂, with P0 a fixed Λ-valued basepoint and P a variable

point of M2, is defined directly as G(P ) − G(P0) when the contour lies in
a single contractible chart, and in general by subdividing any contour into
such pieces. It is generally a multivalued function of P , changing by periods
when P is taken around homology cycles. This integration theory on M2 is
consistent with the corresponding integration theories on M and M̂ [7]. If
c2 is a contour on M2, it projects down to contours c and ĉ on M and M̂
respectively, and we have the relation,∫

c2
ω ⊕ ω̂ =

∫
ĉ
ω +

∫
c
ω̂. (14)

(Note that differentials on a supercurve are invariantly integrated over con-
tours on the dual curve.) In particular, for closed contours, c2, c, ĉ all define
the same homology class and the periods of ω, ω̂ sum to the periods of the
pair.

Now let us specialize to the case that M is itself an N = 1 SRS (with
odd spin structure) [13]. Then M is self-dual; M = M̂ [6] (and in fact
only SRSs are self-dual [7]). Its transition functions are superconformal, and
conventionally parametrized as

zβ = Fβα(zα, θα) = fβα(zα) + θαψβα(zα)
√
f ′βα(zα), (15)

θβ = Ψβα(zα, θα) = ψβα(zα) + θα

√
f ′βα(zα) + ψβα(zα)ψ′βα(zα). (16)

The canonical bundle K has the transition function

k−1
βα = (DαΨβα)−1, (17)

satisfying Dβ = k−1
βαDα. This is the usual bundle of superconformal tensors

of weight 1. M2 has the additional transition function

ρβ = ψβα(zα) + ρα[
√
f ′βα(zα) + ψβα(zα)ψ′βα(zα) + θαψ

′
βα]

= ψβα(zα) + ραkβα. (18)

The cocycle φβα characterizing O2 as an extension of K is simply ψβα. Then
the vector bundle description (7) of O2 precisely reduces to the rank (1, 1)
vector bundle E on M defined by Rogers and Langer, cf. Eq. (11) of [4].
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Because M is self-dual, any Abelian differential ω on M is also a differ-
ential on M̂ , so it gives rise to a pair ω⊕−ω which can be integrated on M2.
Furthermore, all periods of this pair vanish:∮

c2
ω ⊕−ω =

∮
c
ω −

∮
c
ω = 0. (19)

Thus, once we choose a basepoint P0, each section ω of K maps to a single-
valued global function on M2 by

ω 7→
∫ P

P0

ω ⊕−ω, (20)

and a change of basepoint alters this function by a constant. In coordinates,

ω ⊕−ω = [−β(z)− θb(z)] ⊕ [β(u) + ρb(u)]

= (−β − θb)⊕ [β + ρ(b+ θβ ′)]. (21)

Compared to the general case (13) we have α = β and a′ = 0. The an-
tiderivative is trivially

G(z, θ, ρ) = a + θβ(z)− ρ[β(z) + θb(z)], (22)

with a constant.
A superconformal function is defined by Rogers and Langer as a (global)

section of E locally represented by pairs (g, γ) satisfying

γ(z, θ) = D[g(z, θ) + r(z)], (23)

for some r(z). This is equivalent to the constraint α = β on the corresponding
section G of O2. The global superconformal functions automatically satisfy
the constraint a′ = 0 as well [4], so we have identified them as the subset of
the functions on M2 obtained by integrating global sections of K. They are
in one-to-one correspondence with such sections, apart from an integration
constant.

The local situation becomes clear after a change of coordinates (9) that
reduces O2 to a sum of line bundles. Indeed, condition (8) for the cohomo-
logical triviality of ψβα is satisfied with σα = θα as an immediate consequence
of (16). The transition function for the new coordinate ρ̃ = ρ− θ is then

ρ̃β = ρ̃αkβα. (24)
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Writing functions on M2 in the form a + θα̃ − ρ̃(β + θb), where α̃ = α − β,
explicitly shows the splitting O2 = O ⊕ K. Although Rogers and Langer
consider superconformal functions only as global objects, we can also view
them locally as sections of the subsheaf SC of O2 defined by α̃ = 0 and
a = constant in every chart. Indeed, the second condition follows from
the first for infinite-dimensional Λ, since the preservation of α̃ = 0 under
arbitrary coordinate changes (15) requires ψa′ = 0 for all odd ψ, which
makes a constant in this case (for finite-dimensional Λ we can add functions
proportional to η1η2 · · · ηL). In terms of the splitting O2 = O⊕K, SC consists
of K plus constants from O.

The global sections of K have been discussed in [2] and completely de-
scribed in [3]. For the split SRS Msplit, sections have the form ω = β + θb,
with β a holomorphic spinor on the body Mred and b an Abelian differential
on the body. One can choose a basis of such spinors and differentials and try
to modify the resulting split sections ω order by order in the generators of
Λ to obtain a basis of sections on M . In [3] this problem is analyzed in the
2d supergravity picture with the Λ-dependence of the transition functions of
M (i.e., the supermoduli) described by a super Beltrami differential χ, with
the result that β can always be extended to a section, but θb extends iff b
obeys a nilpotent constraint (Eq. (6.23) of [3])

∫
d2z h(z)χ(z)b(z) = 0 for

every holomorphic spinor h (generically there is exactly one up to normaliza-
tion) on Mred. The usual Abelian differentials b will generally not satisfy this
constraint, but since χ is odd, multiples by sufficiently nilpotent elements of
Λ will, showing that the global sections H0(M,K) are not freely generated.
As a result, neither are the superconformal functions H0(M,SC). The ex-
tra condition imposed on superconformal functions in [5] has the effect of
restricting them to the free submodule generated by the extensions of the
spinors β only.

We have seen that, for any SRS M , O2 splits as O ⊕ K because the
extension cocycle ψβα is trivial in H1(M,K−1). The reader may still wonder
how this is possible without the supermoduli which distinguish M from Msplit

(more precisely, since the bosonic moduli in fβα may also contain nilpotents,
from a projected SRS having ψβα = 0) being trivial as well. The two issues
are conceptually distinct: the splitting of O2 means that a change of the ρ
coordinate can remove the term ψ from its transition functions, while the
projectedness of M would mean that a superconformal change of the (z, θ)
coordinates could remove ψ from their transition functions. The obstructions
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to the latter lie in the tangent space to supermoduli space, H1(M,K−2) [14].
To avoid discussion of the global structure of supermoduli space, consider
the issue at the linearized level only. To lowest order in the generators ηi of
Λ, sections of K−1 and K−2 split into components as

K−1 = K−1
red ⊕ θK0

red, K−2 = K−2
red ⊕ θK−1

red, (25)

where K−1
red is the square root of the holomorphic tangent bundle to Mred. To

this order, ψ = ηiψi with ψi belonging to H1(Mred,K−1
red), so that as we know

ψ is a cocycle in H1(M,K−1) (in fact, to all orders in the ηi), while θψ is a
cocycle in H1(M,K−2) (to lowest order only). However, H1(M,K−2), Serre
dual toH0(M,K3), is freely generated while H1(M,K−1), dual toH0(M,K2),
is not [2]. This means precisely that a nilpotent combination of nontrivial
classes ψi can be trivial in H1(M,K−1) but not in H1(M,K−2).

The question of which classes of supercurves enjoy the splitting O2 = O⊕
K is discussed further in [7], particularly for the “generic SKP curves” which
yield algebro-geometric solutions to the super KP hierarchies. In contrast
to the situation just discussed for SRSs, for such curves this splitting is
equivalent to projectedness.
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