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We apply a recently developed renormalization-group �RG� method to study synchronization in a one-
dimensional chain of phase-coupled oscillators in the regime of weak randomness. The RG predicts how
oscillators with randomly distributed frequencies and couplings form frequency-synchronized clusters. Al-
though the RG was originally intended for strong randomness, i.e., for distributions with long tails, we find
good agreement with numerical simulations even in the regime of weak randomness. We use the RG flow to
derive how the correlation length scales with the width of the coupling distribution in the limit of large
coupling. This leads to the identification of a universality class of distributions with the same critical exponent
�. We also find universal scaling for small coupling. Finally, we show that the RG flow is characterized by a
universal approach to the unsynchronized fixed point, which provides physical insight into low-frequency
clusters.
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I. INTRODUCTION

There has been much interest in the spontaneous synchro-
nization of nonlinear oscillators �1–3�. Synchronization is the
phenomenon of how oscillators with different intrinsic fre-
quencies can oscillate at the same frequency due to the in-
teraction between them. As the coupling between them in-
creases, the system becomes more synchronized; i.e. a given
oscillator is more likely to be entrained with others. This
phenomenon is found in many different contexts including
Josephson junctions �4�, lasers �5�, neural networks �6�,
chemical oscillators �1�, and even rhythmic applause �7�.

Although systems that exhibit synchronization usually in-
volve driven and dissipative dynamics, they may be analyzed
using ideas from equilibrium statistical mechanics. For in-
stance, a system can experience a phase transition from the
unsynchronized to the synchronized state, in which a macro-
scopic fraction of the oscillators follows the same frequency.
This is commonly known as the entrainment transition �8,9�
and is analogous to the paramagnetic-ferromagnetic transi-
tion in spin models �10�. The coupling between oscillators
acts like the inverse temperature: as coupling increases, the
system becomes more ordered.

In the mean-field case, when each oscillator is coupled to
all others, the entrainment transition occurs at a finite value
of the coupling �1,3�. One may also consider finite-
dimensional lattices of oscillators, and it has been shown that
the lower critical dimension for entrainment is two �9,11,12�.
For d�2, macroscopic entrainment exists only at infinite
coupling, but for finite coupling, there are still local
frequency-synchronized clusters �13�.

A previous work presented a real-space renormalization-
group �RG� approach for a one-dimensional �1D� chain of
oscillators �14�. It was successful at predicting cluster struc-
ture and frequency in the case of strong randomness, i.e.,
when the frequency and coupling distributions had long tails.
It was thought that strong randomness was required in order
for the perturbative decimation steps to be accurate. The nu-
merical RG was successful over a wide range of distribution
widths and accurately predicted the scaling of the correlation
length with distribution widths. An advantage of this RG
approach was that it allowed the couplings to be randomly
distributed. While most studies have assumed a constant cou-
pling across the lattice, a physically realistic system would
have disorder in the coupling �3�.

In this paper, we extend the analogy between synchroni-
zation and equilibrium physics even further by demonstrat-
ing universal features in the one-dimensional model. Univer-
sality is the existence of a class of systems that exhibit the
same scaling behavior. For example, in spin models, the scal-
ing of the correlation length with temperature near a critical
point may be identical across different physical Hamilto-
nians. In general, the presence of universal behavior is im-
portant because it means that the physical properties being
studied are in some ways independent of the microscopic
details. In equilibrium physics, there is a close relationship
between universality and the RG: the universal properties
near a phase transition are explained by the RG flow there.

Here, we find a similar relationship between universality
and the RG in the 1D nonequilibrium synchronization prob-
lem. We first show that the RG is accurate over a wide range
of frequency and coupling distributions, even in the regime
of weak randomness. Then by studying the flow of the RG
for large and small couplings, we find how the correlation
length scales with the width of the coupling distribution. This
leads to the identification of several distinct universality
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classes based on generic features of the frequency and cou-
pling distributions. In fact, universality exists even far from
the synchronized unstable fixed point. By studying the flow
toward the unsynchronized stable fixed point, we find a uni-
versal approach to it, which dictates the dynamics of low-
frequency clusters independently of initial disorder realiza-
tions.

This paper is organized as follows. Section II reviews the
RG and reports on its performance for weak randomness. In
Secs. III and IV, we study the correlation length for large and
small couplings, respectively. Section V examines the uni-
versal approach of the RG to the stable fixed point. In Sec.
VI, we conclude.

II. RENORMALIZATION GROUP

A. Overview

The one-dimensional chain of oscillators with nearest-
neighbor interactions is described by the equations of mo-
tion:

�̇i = �i + Ki−1 sin��i−1 − �i� + Ki sin��i+1 − �i� , �1�

where �i is the phase of the ith oscillator. The �i are the
intrinsic frequencies taken from a random distribution ��

assumed to have zero mean without loss of generality. The Ki
are the couplings drawn from a random distribution �K and
are assumed to be positive. The couplings organize the os-
cillators into clusters of common frequency �̄ defined as

�̄i � lim
�t−t0�→�

�i�t� − �i�t0�
t − t0

. �2�

In the renormalization group �14�, oscillators are com-
bined into effective oscillators, so the model is slightly gen-
eralized to

mi�̇i = mi�i + Ki−1 sin��i−1 − �i� + Ki sin��i+1 − �i� , �3�

where the parameter mi represents the number of original
oscillators in the effective oscillator i. mi is referred to as an
oscillator’s mass and the reduced mass between a pair of
oscillators is given by �=mimi+1 / �mi+mi+1�.

The RG is based on two decimation steps, which corre-
spond to a coarse graining of the system. The first is the
strong coupling decimation step. Two oscillators, n and
n+1, connected by a large coupling Kn would be expected to
synchronize. Hence, they are combined into a single effec-
tive oscillator with mass M,

M = mn + mn+1, �4�

and intrinsic frequency 	,

	 = �mn�n + mn+1�n+1�/M . �5�

This step is valid up to zeroth order in ratios such as �n /Kn
and Kn−1 /Kn. We refer to such a decimated pair of oscillators
as strongly coupled. The new oscillator may continue to be
recombined with other oscillators, and hence oscillators that
are strongly coupled belong to the same frequency-
synchronized cluster. For the sake of clarity, when a pair of

oscillators are decimated as strongly coupled, we say that
their bond has been decimated.

The second decimation step is the fast oscillator decima-
tion step. An oscillator with large intrinsic frequency �n rela-
tive to its neighbors is expected to rotate freely. Such an
oscillator will not synchronize with its neighbors, so the cou-
plings to the neighbors, Kn−1 and Kn, are set to zero. This
step is valid up to first order in ratios such as Kn /�n and
Kn−1 /�n. In practice, the fast oscillator is removed from the
chain and stored for later analysis, and the coupling between
neighbors n−1 and n+1 is set to zero. There is a second-
order shift in intrinsic frequency for the fast oscillator and its
neighbors �14�, but we ignore the shift in this paper because
it is small. The fast oscillator may consist of multiple oscil-
lators that were strongly coupled together. Hence, removal of
a fast oscillator means that the cluster is in its final form.

The chain of oscillators is renormalized by successive ap-
plication of the two decimation steps. The process is carried
out numerically on a list of parameters �mi ,�i ,Ki�. To decide
which oscillator or bond to decimate first, the energies of
each are calculated: ���i� ,Ki /2�i,i+1�. Energy in this context
reflects how much influence something has on clustering. An
oscillator with the highest energy in the chain has a large
frequency and should probably be decimated as a fast oscil-
lator. Similarly, a bond with the highest energy should prob-
ably be strongly coupled. The highest energies are decimated
first, so that coarse graining corresponds to decreasing the
energy scale of the system. In practice, we decrement the
energy scale E and consider oscillators and bonds with ener-
gies 
E for decimation on each cycle.

Although an oscillator or bond may have the highest en-
ergy, it must satisfy another criterion involving its neighbors
before being decimated. We calculate the ratio

rn �
Kn

�n,n+1��n − �n+1�
, �6�

which measures the tendency of a pair of oscillators to syn-
chronize. If Kn /2�
E and rn�1, the bond is strongly
coupled. If ��n�
E, rn−1�1, and rn�1, oscillator n is re-
moved as a fast oscillator. The threshold of 1 was chosen
based on a numerical study of small chains �15� and is exact
for a chain of two oscillators.

It is possible that an oscillator or bond is not immediately
decimated despite having the largest energy in the chain. For
instance, if rn−1�1 but rn�1, oscillator n is not decimated
as fast. Eventually though, the entire chain is decimated leav-
ing a list of fast oscillators. Each of these fast oscillators
corresponds to a frequency-synchronized cluster. One may
then study the statistics of cluster mass and frequency.

The clusters predicted by the RG are compared to those
found by numerically integrating Eq. �1� with a variable
stepping Runge-Kutta algorithm �16�. To identify frequency
clusters in the simulations, the average frequencies are cal-
culated according to Eq. �2�. A group of oscillators is deter-
mined to be a synchronized cluster if its members have the
same value of �̄ within some tolerance.
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B. Application to weak randomness

In the previous work �14�, the RG was found to be in
good agreement with simulations in the regime of strong
randomness. Comparisons of real-space cluster structure,
cluster mass distribution, and cluster frequency distribution
were excellent. Distributions of both frequency ���� and cou-
pling ��K� were assumed to be Lorentzian. The long tails of
the Lorentzian distributions heightened the overall random-
ness in the chain helping to ensure accuracy of the perturba-
tive decimation steps and to support the intuitive notion of
the strong randomness case. For instance, when decimating
oscillator n as fast, �n should be much larger than the neigh-
boring �, K.

To understand the validity range of the RG, we relax the
condition of strong randomness by considering cases where
�� and �K have finite variance. In particular, we use rectan-
gular, triangular, and Gaussian distributions. We still find
good agreement with simulations in the regime of weak ran-
domness. Figure 1 gives real-space comparisons between RG
and simulation for rectangular and triangular distributions.
Figure 2 compares RG and simulation in terms of cluster
mass distribution. This shows that the RG is applicable over
a wide range of distribution types and widths.

The numerics were done with chains of 106 and 105 os-
cillators for RG and simulation, respectively. �� is assumed
to be symmetric around zero, while �K is the positive half of
an otherwise symmetric distribution. The width of �� is de-

fined to be the half width at half maximum for Lorentzian,
triangular, and rectangular, and the standard deviation for
Gaussian. The width of �K is defined similarly. The width of
�� is set to 1, without loss of generality, while the width  of
�K is varied. The RG is in good agreement with simulations
for a wide range of . In Sec. V, we provide insight into why
the RG works so well even for weak randomness.

With the simulation data, one can study the shape of the
mass distribution �m. For large coupling width �
2.5�, it
takes the form

�m�m� 	 mc1e−m/c2, �7�

where c1 and c2 are constants, and c1 is approximately 2/3
whenever �� and �K are of weak randomness. For smaller
values of , the mass distribution has a similar but more
complicated form.

In the limit of large coupling width, the correlation length
� of the system may be defined as the average cluster mass.
In Fig. 3, we plot � as a function of  for rectangular and
triangular distributions. For all distributions considered, the
scaling

� 	 � �8�

holds for large , where � is the critical exponent. Table I
lists the values of � for different types of distributions. In
Sec. II C, we comment on the significance of �. Note that 
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FIG. 1. Average frequency along the chain when � and K are both drawn from �a� rectangular and �b� triangular distributions. The RG
predictions �open circles� are compared with simulation results �dashed lines, solid squares�. The coupling width  is �a� 1 and �b� 10.
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FIG. 2. Cluster mass distribution when � and K are both drawn from �a� rectangular and �b� triangular distributions. The RG predictions
�open circles� are compared with simulation results �solid squares�. The plots for different values of the coupling width  are offset for
visibility.
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is a proxy for coupling strength, since larger  implies larger
couplings in the system.

C. Fixed points

The RG described above is a functional RG since the
decimation steps modify distributions of �, K, and m, as
opposed to a small set of parameters in a uniform system
�17�. The flow of the RG is given by how those distributions
evolve as energy decreases. This corresponds to a coarse
graining due to the buildup and removal of clusters through
the decimation steps. Since there is not global synchroniza-
tion in one dimension �13�, clusters cannot grow forever.
Indeed, by the end of the RG, the chain has been completely
divided into a list of fast oscillators.

The fixed points of the functional RG are the distributions
of � and K that are invariant under the flow of the RG. We
identify two fixed points of the RG. The stable fixed point is
given by =0 or �K�K�=��K�. This corresponds to the un-
synchronized phase, since all the oscillators are freely rotat-
ing. The unstable fixed point is given by =�. This corre-
sponds to the synchronized phase, since �� is then relatively
narrowly peaked at zero. Any finite  will flow to the unsyn-
chronized fixed point �Figs. 4 and 8�. See Sec. V A for fur-
ther discussion of the unsynchronized fixed point.

The system may be interpreted as having a phase transi-
tion at =� similar to the transition the one-dimensional
Ising model has at zero temperature. The coupling width here
is analogous to inverse temperature: the system becomes
more ordered as  increases. The scaling in Eq. �8� for large
 probes the criticality of the system and the correlation
length � diverges at the critical point.

It is common for equilibrium systems to exhibit univer-
sality near the critical point. This means that macroscopic
quantities such as the correlation length scale with tempera-
ture in the same way for different systems near the critical
temperature �10�. Although the model given by Eq. �1� is far
from equilibrium, since it is driven and overdamped, one
may still find universal behavior near the critical point. In-
deed, Table I shows that the exponent � is the same across
different types of disorder. When �� and �K are rectangular,
triangular, or Gaussian, �
2 /3, and thus those systems be-
long to the same universality class. On the other hand, the
Lorentzian case has �
1 /2 and is in a different universality
class.

The significance of universality is twofold. First, it means
that the scaling given by � does not depend on the micro-
scopic details of a particular system. This is important when
designing experiments to study synchronization. When it
comes to observing the scaling in Eq. �8�, the exact shapes of
�� and �K are not critical as long as they are within a given
universality class. Second, from a theoretical standpoint, uni-
versality is important in that it is often closely related to the
RG flow near the critical point �10�. In Sec. III, we draw the
connection between universality and the RG flow. The fact
that the RG correctly predicts the scaling laws boosts the
claim that it is in fact a good representation of the model.

III. UNIVERSALITY FOR LARGE COUPLING

In this section, we provide an analytical understanding of
the power-law scaling of the correlation length � with the
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FIG. 3. Correlation length � vs coupling width  when � and K are both drawn from �a� rectangular and �b� triangular distributions. The
RG predictions �open circles� are compared with simulation results �solid squares�. The lines show the power-law fits to the solid squares
with the exponent �=0.67. Here, � is defined as the average cluster mass.

TABLE I. The critical exponent � calculated by simulation, nu-
merical RG, and analytical RG for different distribution types for �
and K. The first two columns list the distribution types: rectangular,
triangular, Gaussian, Lorentzian, or delta function. The exponent �
describes how the correlation length scales with the coupling width:
�	�.

�� �K Simulation Numerical RG Analytical RG

Rec Rec 0.671�8� 0.666�3� 2/3

Tri Tri 0.673�8� 0.668�2� 2/3

Gau Gau 0.69�1� 0.669�2� 2/3

Lor Lor 0.47�1� 0.48�2� 1/2

Lor Rec 0.51�2� 0.503�3� 1/2

Rec Lor 0.668�8� 0.669�3� 2/3

Gau � 2.04�5� 2.003�4� 2

unsynchronized
fixed point

synchronized
fixed point

λ = 0 λ =

FIG. 4. �Color online� Flow diagram of the RG showing the
unsynchronized stable fixed point at =0 and synchronized un-
stable fixed point at =�.
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coupling width  in the regime of large . The exponent � is
seen to depend on generic features of the distributions of �
and K. Systems with the same such features will be in the
same universality class. The approach here is similar to the
usual one in equilibrium statistical mechanics, i.e., examin-
ing the RG flow near criticality.

A. RG flow

As explained in Sec. II A, oscillators and bonds are deci-
mated in order of decreasing energy. To simplify the analysis
in this section, we define the energy of a bond to be K in-
stead of K /2�. This means that a bond may be considered
for strong coupling earlier on in the RG. This makes a dif-
ference only when the bond’s r�K /������1 when E�K
but would have been r�1 when E�K /2�. In practice, this
happens rarely. Empirically, it is more accurate to use K /2�
as the energy, but using K instead overestimates � by only up
to 5%.

When �1, most bonds have higher energy than all the
oscillators �Fig. 5�. Also, most bonds will satisfy r�1 and
will be strongly coupled. Hence, the initial stage of the RG
�when E�E� for some E�� is given by the strong coupling of
all bonds that satisfy K
E. Since the strong coupling deci-
mation is done independently of the m and � of the corre-
sponding oscillators, there are no correlations between oscil-
lators remaining in the chain. E� is defined as the energy
scale at which the presence of fast oscillators becomes im-
portant �when r�1�. In the remainder of this section, we
calculate the RG flow for E�E�.

Let �m�m ,E� and �K�K ,E� be the normalized distributions
of m and K of the chain at a given energy E. As the energy is
decremented from E to E−dE, dE�K�E ,E� pairs of oscilla-
tors are decimated as strongly coupled and the corresponding
couplings disappear. The flow of �K�K ,E� is therefore given
by simply rescaling on the interval 0�K�E:

�K�K,E� =
�K�K,E0�

�
0

E

dK��K�K�,E0�
, �9�

where E0 is the initial energy and �K�K ,E0� is the initial K
distribution. The flow of �m is given by successively com-
bining pairs of oscillators:

�m�m,E − dE� =

�m�m,E� + dE�K�E,E�− 2�m�m,E� +� � dm1dm2�m�m1,E��m�m2,E�� �m − �m1 + m2���
1 − dE�K�E,E�

, �10�

which leads to the integro-differential equation

��m

�E
= �K�E,E���m�m,E�

− �
0

m

dm��m�m�,E��m�m − m�,E�� . �11�

We treat m as a continuous variable on the range �0,��. The
initial condition at E0 can be approximated by

�m�m,E0� = e−m, �12�

which captures the fact that clusters have size 1. The equa-
tion may be solved by Laplace transforming with respect to
m. The solution is

�m�m,E� =
1

��E�
e−m/��E�, �13�

where

��E� = e−�E0

E dE��K�E�,E�� �14�

=
1

�
0

E

dK��K�K�,E0�
�15�

is the average cluster mass at energy E. According to Eq.
�13�, m is exponentially distributed in the initial stage of
E�E�. �The final distribution of cluster mass is not strictly
exponential as seen in Eq. �7� and Fig. 2.� Equation �15�
relates energy to length scale. If �K�K ,E0� is continuous and
nonzero near K=0,

0 1 E* λ E

ρω

ρΚ

FIG. 5. An example of when the initial coupling distribution
�dashed-dotted line� is wider than the initial frequency distribution
�dashed line�, i.e., when the coupling width �1. Rectangular dis-
tributions are shown here. The RG does mostly strong coupling
decimation until some energy E�, which corresponds to a length
scale � at which the system looks unsynchronized due to the emer-
gence of fast oscillators.
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� 	


E
when E �  . �16�

This is the case for triangular, Gaussian, rectangular, and
Lorentzian distributions, although the proportionality con-
stants differ.

B. Correlation length

To calculate the correlation length �, we find the energy
scale E� at which the system looks unsynchronized. It is
given by the point in the RG when �r��1, since that is when
the RG starts to encounter a lot of fast oscillators, which end
cluster formation. Hence,

E� � ������� , �17�

where the expectation value is over all pairs of oscillators at
energy E�. Since there are no correlations between m and �
of different oscillators, we can use Eq. �13� for both oscilla-
tors in the pair. Also, an oscillator of mass m has an � given
by the average of m original frequencies. When m�1, we
can apply the central limit theorem to find the distribution

�m,��m,�,E� = �1

�
e−m/��� 1

�0
� m

2�
e−m�2/2�0

2� , �18�

where �0 is the standard deviation of the original ��. Thus,
the expectation value is given by

������� =� � � � dm1dm2d�1d�2�m,��m1,�1,E��m,��m2,�2,E�
m1m2

m1 + m2
��1 − �2� . �19�

The � and �0 dependence can be removed from the integrand
by scaling the integration variables appropriately, and the
resulting integral can be done numerically:

������� = 0.42�0�1/2. �20�

The length scale at E=E� is given by ��E����. Combining
Eqs. �16�, �17�, and �20�, we find

E� 	 �1/2 	 � 

E��1/2
. �21�

Solving Eq. �21� for E� yields

E� 	 1/3 �22�

and thereby

� 	 2/3, �23�

which predicts that �=2 /3 and matches simulation results
�Table I�. Although the exponent is the important quantity,
we note that when all proportionality constants are included,
the value of � predicted here is within 10% of the simulated
result. We also note that E� is universal according to Eq.
�22�.

The universality of � among Gaussian, triangular, and
rectangular distributions is seen to come from Eqs. �16� and
�18�. In other words, if �� has finite variance and �K is con-
tinuous and nonzero at K=0, then �=2 /3.

Now we check when the above argument is self-
consistent. We assumed that  is large, so that the RG does
only strong coupling decimation in the beginning. Also, �
should be large so that it is valid to treat m as a continuous
variable, to use the central limit theorem, and so that Eq. �16�
would hold at E�. To find how large  should be for the
power-law scaling to be accurate, we require ��1 in Eq.
�23� in a self-consistent way. For rectangular �� and �K, we
find the condition �0.24. According to simulation results

in Fig. 3, the power-law scaling holds for 
7.5.
One may use the above results to calculate the dynamical

exponent z for the system. It describes how the diverging
time scale of the system scales with the diverging correlation
length near criticality �18�. Intuitively, when the chain is
composed of long clusters, the clusters tend to have small
frequencies, so the characteristic time scale of the system is
large. The characteristic frequency of the final list of clusters
may be approximated by the frequency standard deviation of
the original oscillators at E�:

��2�o =
� � dmd��m,��m,�,E��m�2

� dm�m�m,E��m
. �24�

The expectation value is done over the original oscillators, as
opposed to clusters of oscillators, which is why the inte-
grands include the factor m. In the case when Eq. �18� holds,
the time scale is given by

1
���2�o

	 �1/2. �25�

Thus, the dynamical exponent z=1 /2 when �� has finite
variance. This matches well with simulation results.

C. Application to other distributions

When �� is Lorentzian, �0 is infinite, so we cannot use
the central limit theorem to characterize oscillator frequen-
cies as in Eq. �18�. Instead, we use the fact that the average
of random variables drawn from a Lorentzian distribution is
described by the same Lorentzian distribution. Thus, Eq. �18�
is modified to
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�m,��m,�,E� = �1

�
e−m/������,E0� , �26�

so that the second factor is independent of m. Following the
same procedure as before leads to the exponent �=1 /2,
which agrees well with simulations �Table I�. Note that
�=2 /3 if �� is rectangular and �K is Lorentzian.

We can extend the analysis to the case where all the cou-
plings are equal to a constant, here denoted by . This is the
most commonly studied case in the literature. First, we con-
sider the situation when �K is a rectangle of width � at
K=:

�K�K,E0� =
1

�
,  − � � K �  . �27�

Equation �15� gives

��E� =
�

E −  + �
,  − � � E �  . �28�

If �� has finite variance, then Eq. �21� becomes

E� 	 �1/2 = � �

E� −  + �
�1/2

, �29�

which, in the limit of �→0, leads to �=2, which is close to
the simulated value 2.04�5�. This agrees with the value given
in �9� based on the linear approximation to Eq. �1�. The
critical exponent can also be predicted using the result that
for a chain of size N, the critical coupling for complete syn-
chronization scales as O��N� �13,19�. This implies that for
an infinite chain, the length scale of synchronized clusters
scales as O�2�.

To summarize, we have derived the scaling behavior near
the synchronized fixed point by studying the RG flow. The
analytical predictions for the critical exponent match closely
with the results of simulations and numerical RG �Table I�.
We have presented a general procedure for handling different
types of distributions and it may be applied beyond the cases
considered here. For example, one may study the case where
�K diverges at K=0, which would require the scaling in Eq.
�16� to be modified.

IV. UNIVERSALITY FOR SMALL COUPLING

In this section, we calculate the correlation length � for
small coupling and show that universality also exists in this
regime. This is surprising, since universality is usually found
in the vicinity of a critical point. This discussion generalizes
the estimate for � given in Ref. �14� to non-Lorentzian dis-
tributions and is cast from an RG point of view.

Since the average cluster mass approaches one in the limit
of →0, we use a different definition for the correlation
length based on the exponential decay of the final mass dis-
tribution �m�m�:

e−1/� =
�m�2�
�m�1�

. �30�

It is not clear if �m has the same exponential form for all m
because it is difficult to collect simulation statistics for clus-

ters made of more than two oscillators for �1. In this
regime, there are very few such clusters. Hence, the above
definition is restricted to m=1,2. Now, � can be less than 1
and in fact approaches 0 when →0.

The RG flow can be used to calculate ��� as in the pre-
vious section. Since �K is now much narrower than �� at the
beginning of the RG, most of the oscillators will be deci-
mated as fast oscillators. Only when E� will bonds start to
be strongly coupled. If a bond satisfies r�K /������1 ini-
tially, it will still be so when the energy is at the bond’s
energy because removing neighboring fast oscillators does
not affect this bond’s r. Since a cluster of mass m requires a
consecutive sequence of m−1 strongly coupled bonds, e−1/�

in Eq. �30� is equal to the probability of r�1 given by the
initial frequency and coupling distributions:

e−1/� = �
0

�

dK�K�K��
0

2K

d������ , �31�

where we have set �=1 /2, and

����� = 2� d���������� − ��, � 
 0 �32�

is the distribution of the absolute value of frequency differ-
ences between neighboring oscillators.

If �K does not have long tails, the integral over � is ap-
proximately 2K���0�. This gives

e−1/� = 4�K��
−�

�

d������2 �33�

=c , �34�

where the proportionality constant c depends on the distribu-
tion types. The correlation length is then

� = −
1

log  + log c
�35�


−
1

log 
. �36�

For very small , the constant c drops out and the form of
��� is universal across Gaussian, triangular, and rectangular
distributions.

On the other hand, if �K has long tails such that �K� is
infinite, the approximation in Eq. �33� does not hold and Eq.
�31� must be integrated directly. For example, when �� and
�K are both Lorentzian �14�,

e−1/� =
4

�2�
0

�

dK
arctan K

2 + K2 , �37�

and the integral may be done numerically.
Figure 6 shows that the predictions in Eqs. �36� and �37�

agree well with simulations for the various distribution types.
It is clear that Lorentzian is in a different universality class
for small . Note that the universality class is determined by
whether �K� is finite: if �� is Lorentzian while �K is Gauss-
ian, the scaling in Eq. �36� still holds.
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V. UNIVERSAL APPROACH TO THE STABLE FIXED
POINT

In this section, we examine the flow of the RG near the
unsynchronized fixed point. The discussion here is different
from that given in Sec. IV, where we assumed that the sys-
tem started out already near the unsynchronized fixed point,
i.e., coupling width �1. Here, we allow the system to start
anywhere, including �1, and look at the flow of the RG
after enough renormalization steps have been carried out so
that the system approaches the unsynchronized fixed point.

We return to using K /2�� K̃ as the bond energy instead of
just K.

A. Unsynchronized stable fixed point

At the unsynchronized fixed point, �K�K�=��K�, meaning
that all the remaining oscillators are effectively uncoupled to

each other. Since this fixed point is stable, at late stages of
the RG, the chain will be punctured by many K=0 bonds
�Fig. 7�. This is due to the removal of a lot of fast oscillators,
which leaves the former neighbors uncoupled. Due to the
large fraction of K=0 bonds, most oscillators will be un-
coupled to both neighbors. Such isolated oscillators are wait-
ing to be removed as fast oscillators and will not be strongly
coupled with their neighbors. Unless the � distribution of
isolated oscillators diverges at zero, it will approach a uni-
form distribution on the interval �−E ,E� and zero elsewhere,
since the flow is given by successively chopping off the
sides. Thus, at the unsynchronized fixed point, �����= 1

2E for
����E. Note that these isolated low-frequency oscillators
can be clusters of mass 1 or of higher mass depending on the
size of .

Due to the stability of the unsynchronized fixed point,
almost all chains will flow to it regardless of the initial dis-
tributions of � and K. Figure 8 shows examples of chains
with different initial distributions flowing to the same fixed
point.

Now we consider the way �K̃ and �� approach their re-
spective fixed distributions. We look at the component of the

a)

b)

c)

FIG. 7. As the RG progresses, the chain is punctured by more
and more K=0 bonds. At the start of the RG �a�, all oscillators are
coupled to their neighbors. Near the end of the RG �c�, it is unlikely
to have two nonzero bonds in a row. We study the properties of
pairs of oscillators that are still connected with a nonzero bond.
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FIG. 6. Correlation length � vs coupling width  for small  for
Gaussian �circles�, triangular �triangles�, rectangular �squares�, and
Lorentzian �plus signs� distributions calculated from simulations.
The prediction from analytical RG is plotted for weak randomness
�solid line� and Lorentzian �dotted line�. Lorentzian is in a different
universality class from the others. Here, � is defined according to
Eq. �30�.
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FIG. 8. Distribution of oscillator frequency �top� and bond energy �bottom� at different stages of the RG: �a,d� 50%, �b,e� 25%, and �c,f�
3% of original oscillators left in chain. The results for different initial distributions of � and K are shown: Lorentzian =7.5 �black, solid�,
triangular =1.25 �gray, solid�, triangular =7.5 �black, dotted�. The RG approaches the fixed point regardless of the initial chain: the

distribution of � becomes rectangular, while the distribution of K̃ approaches a delta function at zero.
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distributions that are not the fixed distributions. For �K̃, this

means considering only bonds with K̃�0. For ��, this means
considering only oscillators with at least one nonzero bond.
These components are perturbations that decay as the RG
approaches the fixed point. Figure 9 shows these perturba-
tions.

It is seen that the K̃ perturbation collapses onto a triangu-
lar distribution regardless of the initial distributions, while
the � perturbation collapses onto a flat and quadratic shape.
Hence, there is a universal approach to the stable fixed point.
One can think of the fixed point as having a least negative
eigenvalue corresponding to a favored direction for ap-
proaching the fixed point in the functional RG space.

This suggests why the RG works well even with weak
randomness. Regardless of whether the chain starts with
strong or weak randomness, distributions of oscillator prop-
erties will look similar as the RG progresses.

In the following section, we explain how the triangular K̃
perturbation comes about. Due to rather technical details, we
postpone the explanation of the flat-quadratic � perturbation
to the Appendix.

B. Explanation of the triangular perturbation

Here, we explain how the RG algorithm leads to the uni-

versal shape of the K̃ perturbation. Since the perturbation is
due to nonzero bonds, we consider pairs of oscillators with a
nonzero bond connecting them, but otherwise uncoupled to
the rest of the chain �Fig. 7�. We ignore single oscillators that
are uncoupled to both neighbors, since they are waiting to be
removed as fast oscillators and do not contribute to the
buildup of future clusters.

To facilitate the discussion, we define a center to be a pair
of oscillators that both satisfy ����E, where E is the energy
of the RG at a given stage. A tail is a pair of oscillators
where at least one ����E. In other words, neither of the
oscillators in a center has been checked for fast oscillator
decimation. On the other hand, at least one of the oscillators
in a tail has been checked for fast oscillator decimation, but
since it is still in the chain, we know that it satisfies r�1 and
is waiting to be strongly coupled �when E= K̃�.

A pair can stop being a center by either being checked for
fast oscillator decimation or strong coupling decimation. In
the first case, the pair will either be removed �r�1� or be-
come a tail �r�1�. In the second case, the pair will either be
strongly coupled �r�1� or remain intact in the chain
�r�1�. It can be shown that when a center gets checked for
strong coupling decimation, it will always be decimated �20�.
It is also possible for new centers to be formed due to the
strong coupling of other oscillators; however, we can neglect
this possibility when it is unlikely to have two nonzero bonds
in a row.

Let the centers be described by the distribution

�c��1 ,�2 , K̃ ;E�, where ��1�� ��2�. This distribution is non-

zero only when ��1� , K̃�E. Its flow is given by setting to
zero the region that does not satisfy that inequality and then
normalizing to unity. Unless there is a divergence at the ori-
gin, the distribution of centers approaches

�c��1,�2,K̃;E� =
1

2E3 , ��2� � ��1� � E, 0 � K̃ � E .

�38�

This is just the statement that any smooth distribution will
look flat if you keep chopping off its sides. Integrating out
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FIG. 9. Distribution of frequency of unisolated oscillators �top� and nonzero bond energies �bottom� at different stages of the RG: �a,d�
50%, �b,e� 25%, and �c,f� 3% of original oscillators left in chain. The results for different initial distributions of � and K are shown:
Lorentzian =7.5 �black, solid�, triangular =1.25 �gray, solid�, triangular =7.5 �black, dotted�. These are the perturbations that decay as

the RG approaches the fixed point. The � perturbation becomes quadratic in the middle and flat otherwise, while the K̃ perturbation becomes
triangular. This shows that the system approaches the fixed point in the same way regardless of the initial chain.
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�1 ,�2 in Eq. �38�, we find that the distribution of K̃ of cen-
ters is flat:

�
K̃

c �K̃;E� =
1

E
, 0 � K̃ � E . �39�

We now consider centers at the moment they get checked
for fast oscillator decimation, i.e., when �1=E. Here we as-
sume that �1 is positive, but analogous results hold for when
it is negative,

��1=E
c ��2,K̃;E� =

1

2E2 , 0 � ��2�,K̃ � E . �40�

At this point, if �2 and K̃ are such that r�1, then oscillator
1 will get removed as a fast oscillator and oscillator 2 will
become an isolated oscillator, which is then ignored. But if
r�1, then the pair becomes a tail and remains in the chain.
Thus, the new tails at energy E are described by

��1=E
t ��2,K̃;E� =

1

E2 , 0 �
��2 − E�

2
� K̃ � E , �41�

which can be rewritten as

��1=E
t �����,K̃;E� =

1

E2 , 0 �
����

2
� K̃ � E . �42�

This distribution is constant over a triangular region in ����,
K̃ as illustrated in Fig. 10.

Now here is the key. Tail pairs remain in the chain until
they are decimated as strongly coupled, which happens when
the RG energy reaches the bond energy. Thus, Eq. �42� de-
scribes the flow of the existing tails at any energy E. Existing
tails have the same distribution as incoming tails at any en-
ergy, so Eq. �42� describes all tails.

By integrating out ���� in Eq. �42�, one finds that the K̃
distribution of tails is triangular:

�
K̃

t �K̃;E� =
2

E2 K̃, 0 � K̃ � E . �43�

In principle, the combined K̃ distribution of center and tail
pairs is given by a weighted average of Eqs. �39� and �43�.
But it is shown in the Appendix that as energy decreases,

there are more and more tails relative to centers, so that at

low energy, all nonzero K̃ are given by just Eq. �43�. This
explains the triangular distribution in Fig. 9.

The universality of Eq. �43� comes from the applicability
of Eq. �38�. Unless �� diverges at �=0, �K̃ will approach

��K̃� through a decaying triangular perturbation as energy
decreases. This explains the universal approach to the stable
fixed point.

C. Physical interpretation

The above discussion has focused on RG flow at low
energies, which corresponds to low-frequency clusters.
When E is sufficiently small, Eq. �38� accurately describes
centers. In physical terms, Eq. �38� describes pairs of clusters

with ��1� , ��2��E that are interacting via a bond K̃. Depend-
ing on how big the coupling is, the two clusters may end up
synchronizing and forming a bigger cluster.

Most of the clusters with ����E will be effectively iso-
lated from the rest of the chain, since most couplings are zero
at low energy. It is shown in the Appendix that of the cluster
pairs that are coupled and have at least one cluster with
����E, 3/5 are centers and 2/5 are tails. The centers have
interactions given by Eq. �39�, while tails have interactions
given by Eq. �43�. Since Eqs. �38� and �43� and the propor-
tion of centers and tails are universal across different initial
distributions, we know that the dynamics at low frequency is
also universal. Thus, this analysis of the RG provides insight
into the interactions of low-frequency clusters.

A possible extension of this analysis is to study the distri-
bution of cluster mass. As mentioned in Sec. II B, the final
distribution of cluster mass is of the form in Eq. �7�. In the
current discussion, the mass information is stored in the bond
energy K /2�. We have considered the flow of pairs of oscil-
lators that are uncoupled from the rest of the chain. By con-
sidering the flow of longer isolated chains, one may be able
to understand the buildup of larger clusters and hence the
final mass distribution. The difficulty lies in the correlations
that appear due to the r criterion.

VI. CONCLUSION

In this paper, we have explored various features of the
real-space RG approach to 1D synchronization, first pre-
sented in Ref. �14�. We have shown that the RG method
performs well even beyond the strong randomness case for
which it was originally intended. The RG was also used to
calculate critical properties of random oscillator chains such
as correlation-length scaling for both large and small cou-
pling. We identified several universality classes, whose be-
havior we also derived analytically. Excellent agreement was
found between our analytical arguments, numerical RG, and
simulations. Finally, we demonstrated the universal approach
to the stable fixed point.

The results presented here may find relevance in physical
realizations of the one-dimensional model. The universality
implies that the predicted scaling could be exhibited in ex-
perimental realizations of the model without fine tuning: as
long as the distributions of � and K have the generic features

E1

E2

E3

2E3 2E2 2E1

K

|∆ω|

~

FIG. 10. Illustration of the flow of tail pairs according to Eq.

�42�. The distribution is constant on a triangular region in ���� , K̃
space and zero elsewhere. As energy decreases, the triangular re-
gion shrinks but keeps the same shape. Both existing tails and in-
coming tails at a given energy are uniformly distributed on the same
triangular region.
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of a given universality class, the corresponding scaling laws
will hold. In addition, the dynamical exponent derived here
shows the relationship between time and length scales in this
model.

We emphasize that the results were all based on the RG as
opposed to a traditional dynamical-systems approach. A
natural next step is to develop an RG for higher dimensional
lattices. It has been determined numerically that the lower
critical dimension for macroscopic entrainment is 2 �8,9�.
Thus, for d�2, an RG would have two stable fixed points
corresponding to the synchronized and unsynchronized
phases �10�. Once an RG has been developed for higher di-
mension, it may be possible to obtain an analytical under-
standing of synchronization in a way similar to the present
work. By studying the RG flow near criticality, one may even
find universal behavior in higher dimension.
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APPENDIX: FLOW OF TAILS AND CENTERS

In this appendix, we calculate in more detail the flow of
distributions of center and tail pairs. We consider late stages
of the RG when it is unlikely to have two nonzero couplings
in a row. We look at pairs of oscillators with a nonzero cou-
pling between them, but otherwise uncoupled to the rest of
the chain. Let �1 and �2 be the frequencies of the pair, with
��1�� ��2�. A center pair satisfies ��1� , ��2��E, while a tail
pair satisfies ��1��E. Thus, at least one of the oscillators
within a tail pair has been checked for fast oscillator deci-
mation and failed. Since we are considering only center and
tail pairs, once such a pair gets decimated as either strongly
coupled or fast, it drops out of the discussion.

We consider the rates of three processes as energy is de-
creased: the rate at which centers are decimated as strongly
coupled, the conversion rate of centers into tails, and the rate
at which tails are decimated as strongly coupled. In general,
the distributions will not be normalized to 1, since we would
like to track the number density as energy is decreased.

We repeat part of the discussion in Sec. V B with gener-
alized notation for the sake of clarity. The starting energy is

denoted by Ẽ, while the energy at a given stage of the RG is
E. The energy at which a particular tail pair is created is
denoted by E0. Note that energies are always taken to be
positive.

1. Flow of centers

We start the calculation by assuming that the distribution
of all unisolated pairs is given by the fixed point distribution
of centers, Eq. �38�. This means that all pairs are centers and
there are no tails. The number density of tails is

�c��1,�2,K̃;E� =
1

2Ẽ3
, ��2� � ��1� � E, 0 � K̃ � E .

�A1�

This distribution is normalized to �E / Ẽ�3. The number of
centers decreases as E decreases due to the decimation of
centers as strongly coupled or fast and the conversion of
centers into tails. Note that we assume that no new centers
are formed, which is a valid assumption during late stages of
the RG when most couplings are zero.

By integrating out variables in Eq. �A1�, one obtains the
distributions of �1 and �2:

��1

c ��1;E� =
E

Ẽ3
��1�, ��1� � E , �A2�

��2

c ��2;E� =
E

Ẽ3
�E − ��2��, ��2� � E . �A3�

Thus, the number density of all center frequencies is

��
c ��;E� = ��1

c ��;E� + ��2

c ��;E� �A4�

=
E2

Ẽ3
, ��� � E , �A5�

which is normalized to 2�E / Ẽ�3, reflecting the fact that each
center contributes two frequencies.

2. Flow of tails

Now we consider the transition from center to tail, i.e.,
when �1=E. We assume for now that �1 is positive, but
analogous results hold for when it is negative. Immediately
before checking the pair for fast oscillator decimation, the
pair is described by

��1=E0

c ��2,K̃;E0� =
�c�E0,�2,K̃;E0�

��1

c �E0;E0�
�A6�

=
1

2E0
2 , 0 � ��2�,K̃ � E0. �A7�

There is a half chance that the pair will satisfy r�1 and be
decimated out and there is a half chance that it will satisfy
r�1 and become a tail. Assuming the latter case, immedi-
ately after becoming a tail, the pair is described by

��1=E0

t ��2,K̃;E0� =
1

E0
2 , 0 �

��2 − E0�
2

� K̃ � E0,

�A8�

which reflects the fact that r�1. As shown in Fig. 10, the
flow of tails created at E0 as energy E decreases is given by

�t��2,K̃;E,E0� =
1

E0
2 , 0 �

��2 − E0�
2

� K̃ � E . �A9�
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By integrating out K̃ above, one finds the distribution of
�2 for tails that satisfy �1=E0:

��2

t+ ��2;E,E0� =
1

E0
2�E −

E0 − �2

2
� ,

E0 − 2E � �2 � E0. �A10�

The corresponding distribution for tails that satisfy �1=−E0
is

��2

t− ��2;E,E0� =
1

E0
2�E −

E0 + �2

2
�

− E0 � �2 � − E0 + 2E . �A11�

The distributions in Eqs. �A10� and �A11� are normalized to
�E /E0�2, so that the survival probability is 1 when E=E0, but
decreases as E decreases due to strong coupling decimation.
Note that this probability can be deduced geometrically from
Fig. 10.

We can also write down the distribution of �1 for tails that
were made at E0:

��1

t+ ��1;E,E0� = � E

E0
�2

���1 − E0� , �A12�

��1

t− ��1;E,E0� = � E

E0
�2

���1 + E0� , �A13�

for positive and negative �1, respectively.
Now we find ��

t �� ;E�, the distribution of all tail frequen-
cies at a given energy E. We integrate over all the possible
energies E0, at which tails could have been created. As the
creation energy is decremented from E0 to E0−dE0,
dE0 ·��

c �E0 ;E0� center pairs with positive �1 are checked for
fast oscillator decimation. An equal number of center pairs
with negative �1 are checked. Note that ��

c is given by Eq.
�A5�. This leads to

��
t ��;E� =

1

2
�

E

Ẽ
dE0��

c �E0;E0����1

t+ ��;E,E0� + ��1

t− ��;E,E0�

+ ��2

t+ ��;E,E0� + ��2

t− ��;E,E0�� �A14�

� �̃�1

t+ ��;E� + �̃�1

t− ��;E� + �̃�2

t+ ��;E� + �̃�2

t− ��;E� .

�A15�

The factor of 1/2 accounts for the fact that half of the pairs
checked for fast oscillator decimation will survive and be-
come tails.

Then we calculate each of the terms:

�̃�1

t+ ��;E� =
1

2
�

E

Ẽ
dE0

E0
2

Ẽ3

E2

E0
2���1 − E0� =

E2

2Ẽ3
, E � � � Ẽ ,

�A16�

�̃�1

t− ��;E� =
E2

2Ẽ3
, − Ẽ � � � − E , �A17�

�̃�2

t+ ��;E� =
1

2
�

max�E,��

min�Ẽ,�+2E�
dE0

E0
2

Ẽ3

1

E0
2�E −

E0 − �

2
�

= �
�� + E�2

8Ẽ3
, ��� � E

E2

2Ẽ3
, � � E , � �A18�

�̃�2

t− ��;E� =
1

2
�

max�E,−��

min�Ẽ,−�+2E�
dE0

E0
2

Ẽ3

1

E0
2�E −

E0 + �

2
�

= �
�� − E�2

8Ẽ3
, ��� � E

E2

2Ẽ3
, � � − E .� �A19�

We have assumed that � ,E� Ẽ. In other words, we are look-
ing at low frequencies at low energies, i.e., when the RG is
close to the unsynchronized fixed point.

Summing up the four terms, we find the frequency distri-
bution of tails in this regime:

��
t ��;E� = �

E2

Ẽ3
, ��� � E

�2 + E2

4Ẽ3
, ��� � E .� �A20�

By comparing Eqs. �A5� and �A20�, one sees that there are
relatively more and more tails than centers as E decreases.
By integrating ��

c �� ;E� and ��
t �� ;E� on the interval

−E���E, one finds that there are 2�E / Ẽ�3 and

�2 /3��E / Ẽ�3 oscillators with ����E belonging to tails and

centers, respectively. In other words, there are �E / Ẽ�3 center

pairs and �2 /3��E / Ẽ�3 tail pairs with at least one oscillator
satisfying ����E. Thus, 3/5 of all such pairs are centers.

By adding on the frequency distribution of centers given
by Eq. �A5�, we find the frequency distribution of all uniso-
lated oscillators

����;E� = �
E2

Ẽ3
, ��� � E

�2 + 5E2

4Ẽ3
, ��� � E .� �A21�

This matches the flat-quadratic distribution found with the
numerical RG in Fig. 9.
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