421 research outputs found

    Problem-based Learning in Institutional and Curricular Design at the New Model Institute for Technology and Engineering (NMITE)

    Get PDF
    NMITE’s Master’s in Integrated Engineering (MEng) was created with a unique philosophy of integrating not only traditionally separate strands of engineering, but also of integrating engineering with other disciplines such as arts, humanities, and business. This broad and deep integration is made possible by adopting the principles and practices of problem-based learning (PBL) and embedding them within predetermined module challenges. In this way, each PBL challenge highlights and hones areas of engineering expertise and embeds liberal subjects whilst maintaining the integration intrinsic to the programme. Overall, this method supports the use of block learning with deep integration of employers and the community in the educational experience

    Here and then: Learning by making places with digital spatial story lines

    Get PDF
    In this article, we introduce and analyze learning experiences made possible by a teaching framework that we have developed and call digital spatial story lines (DSSLs). DSSLs offer a novel approach to learning on the move by engaging learners with related conceptual practices of archival curation, digital mapping, and the production of public history. Learners collaborate to make and follow map-based story lines that bridge archival media they curate in public libraries and museums onto city neighborhoods these media describe. Story lines can be followed as tours to explore under- or untold stories about a city’s public history at walking scale. To illustrate and study learning within the DSSL framework, we describe and analyze one design iteration from a larger, multi-year research project with local museum, library, and high school partners. Our analysis shows how making and following story lines provided opportunities for pre-service social studies teachers to engage with and learn about the public history of racial segregation, Civil Rights Movement activism, and American Roots Music in Nashville, Tennessee (aka the “Music City”). Our analysis focuses on using archival material to create and share public history as a mobile experience of being both “here-and-then”—a form of palimpsest in which learning on the move layers together historic places and the voices of different historical actors. We end with a discussion of who speaks for the public history of city neighborhoods and the prospects and limitations for teaching and learning with the DSSL framework

    Defining Spoken Language Benchmarks and Selecting Measures of Expressive Language Development for Young Children With Autism Spectrum Disorders

    Get PDF
    Purpose The aims of this article are twofold: (a) to offer a set of recommended measures that can be used for evaluating the efficacy of interventions that target spoken language acquisition as part of treatment research studies or for use in applied settings and (b) to propose and define a common terminology for describing levels of spoken language ability in the expressive modality and to set benchmarks for determining a child’s language level in order to establish a framework for comparing outcomes across intervention studies. Method The National Institute on Deafness and Other Communication Disorders assembled a group of researchers with interests and experience in the study of language development and disorders in young children with autism spectrum disorders. The group worked for 18 months through a series of conference calls and correspondence, culminating in a meeting held in December 2007 to achieve consensus on these aims. Results The authors recommend moving away from using the term functional speech, replacing it with a developmental framework. Rather, they recommend multiple sources of information to define language phases, including natural language samples, parent report, and standardized measures. They also provide guidelines and objective criteria for defining children’s spoken language expression in three major phases that correspond to developmental levels between 12 and 48 months of age

    Recognition memory-induced gene expression in the perirhinal cortex:A transcriptomic analysis

    Get PDF
    We have used transcriptome analysis to identify genes and pathways that are activated during recognition memory formation in the perirhinal cortex. Rats were exposed to objects either repeatedly, so that the objects become familiar, or to novel objects in a bow-tie maze over six consecutive days. On the final day, one hour after the last exposure to the series of objects, RNA from the perirhinal cortex was sequenced to compare the transcriptome of naĂŻve control rats and rats exposed to either novel or familiar stimuli. Differentially expressed genes were identified between group Novel and group Familiar rats. These included genes coding for transcription factors, GDNF receptors and extracellular matrix-related proteins. Moreover, differences in alternative splicing were also detected between the two groups, which suggests that this post-transcriptional mechanism may play a role in the consolidation of object recognition memory. To conclude, this study shows that RNA sequencing can be used as a tool to identify differences in gene expression in behaving animals undergoing the same task but encountering different exposures

    iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function

    Get PDF
    BACKGROUND: SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level. RESULTS: iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3’ and 5’ untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9–10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion. CONCLUSIONS: iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0220-7) contains supplementary material, which is available to authorized users

    The SOFG Anatomy Entry List (SAEL):an annotation tool for functional genomics data

    Get PDF
    A great deal of data in functional genomics studies needs to be annotated with low-resolution anatomical terms. For example, gene expression assays based on manually dissected samples (microarray, SAGE, etc.) need high-level anatomical terms to describe sample origin. First-pass annotation in high-throughput assays (e.g. large-scale in situ gene expression screens or phenotype screens) and bibliographic applications, such as selection of keywords, would also benefit from a minimum set of standard anatomical terms. Although only simple terms are required, the researcher faces serious practical problems of inconsistency and confusion, given the different aims and the range of complexity of existing anatomy ontologies. A Standards and Ontologies for Functional Genomics (SOFG) group therefore initiated discussions between several of the major anatomical ontologies for higher vertebrates. As we report here, one result of these discussions is a simple, accessible, controlled vocabulary of gross anatomical terms, the SOFG Anatomy Entry List (SAEL). The SAEL is available from http://www.sofg.org and is intended as a resource for biologists, curators, bioinformaticians and developers of software supporting functional genomics. It can be used directly for annotation in the contexts described above. Importantly, each term is linked to the corresponding term in each of the major anatomy ontologies. Where the simple list does not provide enough detail or sophistication, therefore, the researcher can use the SAEL to choose the appropriate ontology and move directly to the relevant term as an entry point. The SAEL links will also be used to support computational access to the respective ontologies

    Implementation of a Distributed Architecture for Managing Collection and Dissemination of Data for Fetal Alcohol Spectrum Disorder

    Get PDF
    We implemented a distributed system for management of data for an international collaboration studying Fetal Alcohol Spectrum Disorders (FASD). Subject privacy was protected, researchers without dependable Internet access were accommodated, and researchers’ data were shared globally. Data dictionaries codified the nature of the data being integrated, data compliance was assured through multiple consistency checks, and recovery systems provided a secure, robust, persistent repository. The system enabled new types of science to be done, using distributed technologies that are expedient for current needs while taking useful steps towards integrating the system in a future grid-based cyberinfrastructure. The distributed architecture, verification steps, and data dictionaries suggest general strategies for researchers involved in collaborative studies, particularly where data must be de-identified before being shared. The system met both the collaboration’s needs and the NIH Roadmap’s goal of wide access to databases that are robust and adaptable to researchers’ needs

    Effects of Aging in Reaching and Grasping Movements: A Kinematic Analysis of Movement Context

    Get PDF
    Although several studies have investigated the effects of aging on aspects of motor planning and control, there remains a lack of consensus about the underlying mechanisms responsible for the motor slowing associated with aging. This may, at least partially, be due to the fact that few studies have kinematically examined both the transport and grasp components in both younger and older adults, and furthermore, even fewer have examined these movements when the context of the task is changed, such as when the movement is performed in isolation compared to when it is embedded in a sequence. Therefore, the purpose of this thesis was threefold: 1) to investigate how aging affects performance on a single reach-to-grasp movement, 2) to examine how movement context affects performance on the reach-to-grasp movement when it is performed alone or as the first movement in a two-movement sequence- in other words, are older adults able to plan the first motor task movement in anticipation of performing a subsequent task, and 3) whether younger and older adults are able to plan, execute, and modify that movement in accordance with the extrinsic properties of the subsequent movement task (near versus far target for second movement). To address this, the movement profiles of both younger (N=14; mean age= 20.7 years; 4 males, 10 females) and older (N=11; mean age= 75.1 years; 3 males, 8 females) healthy right-handed adults were compared on performing a reach-to-grasp movement under 3 different movement conditions: single-movement task, two-movement sequence to near target, and two-movement sequence to far target. For the two-movement sequence conditions, participants were instructed to reach and grasp the object (like the single-movement task), but then to move and place it on either a closer (near condition) or farther (far condition) target location. Overall, the results from this study are in agreement with the literature showing older adults to have slower movements in general and consistently taking longer to both initiate and execute the reach-to-grasp movement than the younger adults for all conditions. There were no other differences between groups on the single-movement condition. For all participants, the reach-to-grasp movement took longer when it was performed in isolation than when it was embedded as the first part of a two-movement sequence. This finding can be explained by the movement termination effect and is consistent with findings from studies on aiming movements showing that when the movement plan involves stabilizing the arm at the first target (single-movement) as opposed to merely slowing it down (two-movement sequence tasks), the constraint of achieving a stabile position imposes a greater demand, thus requiring the movement iv to be made more slowly. The results obtained from the study indicate that the movement termination effect is also seen in the context of prehensile movements and furthermore, this effect on performance persists with age. Not only do the findings from this study show that this effect persists with age, but also that this effect increases with age, as revealed by a Group by Condition effect for reaction time, movement time, and relative timing of the velocity profile, indicating greater changes in reaching performance between single- and two-movement conditions for the older adults than for the younger adults. Upon further examination of the details of the movement, it is apparent this movement termination effect is reflected in the ballistic phase of the movement. This last notion is inconsistent with previous studies, which showed the increased movement time associated with the movement termination effect was the result of changes in the amount of time spent in the deceleration phase toward the end of the movement rather than the beginning of the movement. Lastly, when reach-to-grasp performance was compared between moving to a near- compared to a far-target in the two-movement conditions, no differences were found between any of the movement features for either group. This suggests that the increased proportion of time spent in deceleration for the dual-movement conditions compared to the single-movement condition in older adults is due to online feedback control for terminating the first movement rather than online planning of the second movement. Despite the changes seen in the transport component, the findings for the manipulation component indicate that the formation of the grasp and its relative coupling with the transport component remains intact with age
    • 

    corecore