530 research outputs found

    Expression and purification of functional human glycogen synthase-1:glycogenin-1 complex in insect cells

    Get PDF
    We report the successful expression and purification of functional human muscle glycogen synthase (GYS1) in complex with human glycogenin-1 (GN1). Stoichiometric GYS1:GN1 complex was produced by co-expression of GYS1 and GN1 using a bicistronic pFastBacā„¢-Dual expression vector, followed by affinity purification and subsequent size-exclusion chromatography. Mass spectrometry analysis identified that GYS1 is phosphorylated at several well-characterised and uncharacterised Ser/Thr residues. Biochemical analysis, including activity ratio (in the absence relative to that in the presence of glucose-6-phosphate) measurement, covalently attached phosphate estimation as well as phosphatase treatment, revealed that recombinant GYS1 is substantially more heavily phosphorylated than would be observed in intact human or rodent muscle tissues. A large quantity of highly-pure stoichiometric GYS1:GN1 complex will be useful to study its structural and biochemical properties in the future, which would reveal mechanistic insights into its functional role in glycogen biosynthesis

    Strain Modulations as a Mechanism to Reduce Stress Relaxation in Laryngeal Tissues

    Get PDF
    Vocal fold tissues in animal and human species undergo deformation processes at several types of loading rates: a slow strain involved in vocal fold posturing (on the order of 1 Hz or so), cyclic and faster posturing often found in speech tasks or vocal embellishment (1ā€“10 Hz), and shear strain associated with vocal fold vibration during phonation (100 Hz and higher). Relevant to these deformation patterns are the viscous properties of laryngeal tissues, which exhibit non-linear stress relaxation and recovery. In the current study, a large strain time-dependent constitutive model of human vocal fold tissue is used to investigate effects of phonatory posturing cyclic strain in the range of 1 Hz to 10 Hz. Tissue data for two subjects are considered and used to contrast the potential effects of age. Results suggest that modulation frequency and extent (amplitude), as well as the amount of vocal fold overall strain, all affect the change in stress relaxation with modulation added. Generally, the vocal fold cover reduces the rate of relaxation while the opposite is true for the vocal ligament. Further, higher modulation frequencies appear to reduce the rate of relaxation, primarily affecting the ligament. The potential benefits of cyclic strain, often found in vibrato (around 5 Hz modulation) and intonational inflection, are discussed in terms of vocal effort and vocal pitch maintenance. Additionally, elderly tissue appears to not exhibit these benefits to modulation. The exacerbating effect such modulations may have on certain voice disorders, such as muscle tension dysphonia, are explored

    Miniature Optical Communications Transceiver (MOCT)

    Get PDF
    This project will advance the technology readiness of the Miniature Optical Communications Transceiver (MOCT) from TRL 3 to TRL 4. MOCT consists of a novel software-defined pulse modulator (SDPM),integrated laser system, and avalanche photodetection system, and is designed for optical communications between small spacecraft, including CubeSats, using a pulse position modulation (PPM) scheme. PPM encodes data in the timing of optical pulses with respect to a set of timing windows known as slots. The MOCT design focuses on power-efficiency making it particularly interesting for small satellites. We have demonstrated in the laboratory that this technology can generate shorter than 1 nanosecond-wide 1550 nanometer (nm) optical pulses with better than 50 picosecond (ps) timing accuracy. The timing resolution of this system is roughly a factor of four better than previously flown systems, meaning that it can transmit more bits of data with each optical pulse. Because this technology can both generate and time stamp the arrival of short optical pulses with 50 ps precision, it simultaneously provides power efficient communications and relative ranging between small spacecraft at the centimeter (cm) level

    Timescale of Stellar Feedback-Driven Turbulence in the ISM: A Deep Dive into UGC 4305

    Full text link
    Understanding the interplay of stellar feedback and turbulence in the interstellar medium (ISM) is essential to modeling the evolution of galaxies. To determine the timescales over which stellar feedback drives turbulence in the ISM, we performed a spatially resolved, multi-wavelength study of the nearby star-forming dwarf galaxy UGC 4305 (aka Holmberg II). As indicators of turbulence on local scales (400 pc), we utilized ionized gas velocity dispersion derived from IFU HĪ±\alpha observations and atomic gas velocity dispersion and energy surface densities derived from HI synthesis observations with the Very Large Array. These indicators of turbulence were tested against star formation histories over the past 560 Myr derived from Color-Magnitude Diagrams (CMD) using Spearman's rank correlation coefficient. The strongest correlation identified at the 400 pc scale is between measures of HI turbulence and star formation 70-140 Myr ago. We repeated our analysis of UGC 4305's current turbulence and past star formation activity on multiple physical scales (āˆ¼\sim560, and 800 pc) to determine if there are indications of changes in the correlation timescale with changes to the physical scale. No notable correlations were found at larger physical scales emphasizing the importance of analyzing star formation driven turbulence as a local phenomenon.Comment: 17 pages, 9 figure, accepted to A

    The mechanism of the amidases: mutating the glutamate adjacent to the catalytic triad inactivates the enzyme due to substrate mispositioning

    Get PDF
    All known nitrilase superfamily amidase and carbamoylase structures have an additional glutamate thatis hydrogen bonded to the catalytic lysine in addition to the Glu, Lys, Cys ā€œcatalytic triad.ā€ In the amidase from Geobacillus pallidus, mutating this glutamate (Glu-142) to a leucine or aspartate renders the enzyme inactive. X-ray crystal structure determination shows that the structural integrity of the enzymeismaintained despite themutation with the catalytic cysteine (Cys-166), lysine (Lys-134), and glutamate (Glu- 59)in positions similar to those of the wild-type enzyme. In the case of the E142L mutant, a chloride ion is located in the position occupied by Glu-142 O 1 in the wild-type enzyme andinteracts with the active site lysine. In the case of the E142D mutant, this site is occupied by Asp-142 O1.In neither case is an atom located at the position of Glu-142 O 2 in the wild-type enzyme. The active site cysteine of the E142Lmutant was found to form aMichael adduct with acrylamide, which is a substrate of the wild-type enzyme, due to an interaction that places the double bond of the acrylamide rather than the amide carbonyl carbon adjacent to the active site cysteine. Our results demonstrate that in the wild-type active site a crucial role is played by the hydrogen bond between Glu-142 O 2 and the substrate amino groupin positioning the substrate with the correct stereoelectronic alignment to enable the nucleophilic attack on the carbonyl carbon by the catalytic cysteine

    Packaging Technologies for High Temperature Electronics and Sensors

    Get PDF
    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process

    Packaging Technologies for High Temperature Electronics and Sensors

    Get PDF
    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process

    High Temperature, Wireless Seismometer Sensor for Venus

    Get PDF
    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus

    Vehicle Integrated Propulsion Research for the Study of Health Management Capabilities

    Get PDF
    Presentation on vehicle integrated propulsion research results and planning. This research emphasizes the testing of advanced health management sensors and diagnostics in an aircraft engine that is operated through multiple baseline and fault conditions
    • ā€¦
    corecore