192 research outputs found

    Characterization and consequences of Telomere replication gone awry

    Get PDF
    Telomeres, the ends of linear eukaryotic chromosomes, pose several unique challenges to genome stability. My thesis work is concerned with the difficulties the replication machinery encounters when attempting to replicate telomeres, and with possible consequences of defects in telomere replication. The relevance of the DNA replication machinery precipitated while characterizing fission yeast cells lacking the telomeric binding protein Taz1 (a homologue of mammalian TRF1 & 2). In the absence of Taz1, replication forks stall when encountering telomeric sequences, leading to telomere breakage and loss. This unanticipated function of the telomeric complex suggests that telomeric sequences pose an obstacle to the replication machinery. Indeed, further experiments suggested that any repeated sequence has a propensity to cause replication fork stalling, suggesting that our findings may also be applicable to other parts of the genome. Challenges to semi-conservative replication in cells lacking Taz1 are likely to be the underlying cause of another taz1Δ-specific phenomenon: telomere entanglement and loss of viability occurring specifically at cold temperatures. Screening for suppressors of this phenotype led to the identification of two additional factors involved in the etiology of dysfunctional telomeres: the post- translational modification SUMO, and the fission yeast member of the conserved RecQ helicase family, Rqh1. A novel sumoylation deficient allele of Rqh1 was able to suppress several taz1Δ-specific phenomena without dramatically affecting other genome-wide functions of Rqh1. Interestingly, genetic analysis revealed that this allele acts in a loss-of-function manner, suggesting that Rqh1 activity is detrimental for taz1Δ telomeres. Our findings underscore the significance of telomere-specific regulation, as Rqh1, and many other factors participating in telomere metabolism, are not exclusive to telomeres

    Kinetics of magnetic ageing of 2%Si non-oriented grain electrical steel.

    Get PDF
    The effect of carbon content on the magnetic ageing index and Vickers hardness evolution on annealed samples of 2%Si non-oriented grain electrical steel was studied. Samples with 40 and 60ppm carbon content were subjected at ageing temperatures of 200 and 225?C, respectively. During the ageing treatment, the cycle was interrupted on several time intervals in order to obtain the core loss and to determine Vickers hardness. The precipitates were characterized using scanning electron microscope (SEM). Using the software MatCalc, computer simulations of ?-carbide precipitation were performed and compared with experimental data from literature. The results for both carbon contents showed that the maximum hardness value was achieved in shorter time than that to achieve the maximum magnetic ageing, indicating that the critical size of precipitates more harmful to the magnetic properties is larger than the ones that maximize the hardness

    Identification of novel alleles conferring superior production of rose flavor phenylethyl acetate using polygenic analysis in yeast.

    Get PDF
    Flavor compound metabolism is one of the last areas in metabolism where multiple genes encoding biosynthetic enzymes are still unknown. A major challenge is the involvement of side activities of enzymes having their main function in other areas of metabolism. We have applied pooled-segregant whole-genome sequence analysis to identify novel Saccharomyces cerevisiae genes affecting production of phenylethyl acetate (2-PEAc). This is a desirable flavor compound of major importance in alcoholic beverages imparting rose- and honey-like aromas, with production of high 2-PEAc levels considered a superior trait. Four quantitative trait loci (QTLs) responsible for high 2-PEAc production were identified, with two loci each showing linkage to the genomes of the BTC.1D and ER18 parents. The first two loci were investigated further. The causative genes were identified by reciprocal allele swapping into both parents using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. The superior allele of the first major causative gene, FAS2, was dominant and contained two unique single nucleotide polymorphisms (SNPs) responsible for high 2-PEAc production that were not present in other sequenced yeast strains. FAS2 encodes the alpha subunit of the fatty acid synthetase complex. Surprisingly, the second causative gene was a mutant allele of TOR1, a gene involved in nitrogen regulation. Exchange of both superior alleles in the ER18 parent strain increased 2-PEAc production 70%, nearly to the same level as in the best superior segregant. Our results show that polygenic analysis combined with CRISPR/ Cas9-mediated allele exchange is a powerful tool for identification of genes encoding missing metabolic enzymes and for development of industrial yeast strains generating novel flavor profiles in alcoholic beverages

    Axial tubule junctions control rapid calcium signaling in atria.

    Get PDF
    The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon "super-hubs" thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias

    Patient-reported outcomes in multiple sclerosis: a prospective registry cohort study

    Get PDF
    Registries have the potential to tackle some of the current limitations in determining the long-term impact of multiple sclerosis. Online assessments using patient-reported outcomes can streamline follow-up enabling large-scale, long-term, cost-effective, home-based, and patient-focused data collection. However, registry data are sparsely sampled and the sensitivity of patient-reported outcomes relative to clinician-reported scales is unknown, making it hard to fully leverage their unique scope and scale to derive insights. This retrospective and prospective cohort study over 11 years involved 15 976 patients with multiple sclerosis from the United Kingdom Multiples Sclerosis Register. Primary outcomes were changes in two patient-reported outcomes: Multiple Sclerosis Impact Scale motor component, and Multiple Sclerosis Walking Scale. First, we investigated their validity in measuring the impact of physical disability in multiple sclerosis, by looking at their sensitivity to disease subtype and duration. We grouped the available records (91 351 for Multiple Sclerosis Impact Scale motor and 68 092 for Multiple Sclerosis Walking Scale) by these two factors, and statistically compared the resulting groups using a novel approach based on Monte Carlo permutation analysis that was designed to cope with the intrinsic sparsity of registry data. Next, we used the patient-reported outcomes to draw novel insights into the developmental time course of subtypes; in particular, the period preceding the transition from relapsing to progressive forms. We report a robust main effect of disease subtype on the patient-reported outcomes and interactions of disease subtype with duration (all P < 0.0001). Specifically, patient-reported outcomes worsen with disease duration for all subtypes (all P < 0.0001) apart from benign multiple sclerosis (Multiple Sclerosis Impact Scale motor: P = 0.796; Multiple Sclerosis Walking Scale: P = 0.983). Furthermore, the patient-reported outcomes of each subtype are statistically different from those of the other subtypes at all time bins (Multiple Sclerosis Impact Scale motor: all P < 0.05; Multiple Sclerosis Walking Scale: all P < 0.01) except when comparing relapsing-remitting multiple sclerosis with benign multiple sclerosis and primary progressive multiple sclerosis with secondary progressive multiple sclerosis. Notably, there were statistically significant differences between relapsing-remitting and progressive subtypes at disease onset. Critically, the patient-reported outcomes are sensitive to future transitions to progressive subtypes, with individuals who transition presenting with higher patient-reported outcomes in their relapsing-remitting phase compared to individuals who don’t transition since onset (all P < 0.0001). Patient-reported outcomes capture different patterns of physical worsening over disease length and across subtypes; therefore, they are a valid tool to measure the physical impact of multiple sclerosis over the long-term and cost-effectively. Furthermore, more advanced physical disability manifests years before clinical detection of progressive subtypes, adding evidence to the presence of a multiple sclerosis prodrome

    Variable flocculation profiles of yeast strains isolated from cacha?a distilleries.

    Get PDF
    In cacha?a production, the use of yeast cells as starters with predictable flocculation behavior facilitates the cell recovery at the end of each fermentation cycle. Therefore, the aim of this work was to explain the behavior of cacha?a yeast strains in fermentation vats containing sugarcane through the determination of biochemical and molecular parameters associated with flocculation phenotypes. By analyzing thirteen cacha?a yeast strains isolated from different distilleries, our results demonstrated that neither classic biochemical measurements (e.g., percentage of flocculation, EDTA sensitivity, cell surface hydrophobicity, and sugar residues on the cell wall) nor modern molecular approaches, such as polymerase chain reaction (PCR) and real-time PCR (q-PCR), were sufficient to distinctly classify the cacha?a yeast strains according to their flocculation behavior. It seems that flocculation is indeed a strain-specific phenomenon that is difficult to explain and/or categorize by the available methodologie

    Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induces Post-Translational Modifications of AKAP121, DRP1 and OPA1 That Promote Mitochondrial Fission

    Get PDF
    Rationale: Cardiac lipotoxicity, characterized by increased uptake, oxidation and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. Objective: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. Methods and Results: Using a transgenic mouse model of cardiac lipotoxicity overexpressing long-chain acyl-CoA synthetase 1 in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate- treated neonatal rat ventricular cardiomyocytes (NRVCs). Palmitate exposure to NRVCs initially activates mitochondrial respiration, coupled with increased mitochondrial membrane potential and adenosine triphosphate (ATP) synthesis. However, long-term exposure to palmitate (\u3e8h) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of A-kinase anchor protein (AKAP121) leading to reduced phosphorylation of DRP1 at Ser637 and altered proteolytic processing of OPA1. Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. Conclusions: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy. 38 pp; includes supplemental materials

    Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1α

    Get PDF
    Glucocorticoid levels rise dramatically in late gestation to mature foetal organs in readiness for postnatal life. Immature heart function may compromise survival. Cardiomyocyte glucocorticoid receptor (GR) is required for the structural and functional maturation of the foetal heart in vivo, yet the molecular mechanisms are largely unknown. Here we asked if GR activation in foetal cardiomyocytes in vitro elicits similar maturational changes. We show that physiologically relevant glucocorticoid levels improve contractility of primary-mouse-foetal cardiomyocytes, promote Z-disc assembly and the appearance of mature myofibrils, and increase mitochondrial activity. Genes induced in vitro mimic those induced in vivo and include PGC-1α, a critical regulator of cardiac mitochondrial capacity. SiRNA-mediated abrogation of the glucocorticoid induction of PGC-1α in vitro abolished the effect of glucocorticoid on myofibril structure and mitochondrial oxygen consumption. Using RNA sequencing we identified a number of transcriptional regulators, including PGC-1α, induced as primary targets of GR in foetal cardiomyocytes. These data demonstrate that PGC-1α is a key mediator of glucocorticoid-induced maturation of foetal cardiomyocyte structure and identify other candidate transcriptional regulators that may play critical roles in the transition of the foetal to neonatal heart

    Protocol for a multicentre randomiSed controlled TRial of IntraVEnous immunoglobulin versus standard therapy for the treatment of transverse myelitis in adults and children (STRIVE)

    Get PDF
    Introduction Transverse myelitis (TM) is an immune-mediated disorder of the spinal cord which causes motor and sensory disturbance and limited recovery in 50% of patients. Standard treatment is steroids, and patients with more severe disease appear to respond to plasma exchange (PLEX). Intravenous immunoglobulin (IVIG) has also been used as an adjunct to steroids, but evidence is lacking. We propose the first randomised control trial in adults and children, to determine the benefit of additional treatment with IVIG. Methods and analysis 170 adults and children aged over 1 year with acute first episode TM or neuromyelitis optica (with myelitis) will be recruited over a 2.5-year period and followed up for 12 months. Participants randomised to the control arm will receive standard therapy of intravenous methylprednisolone (IVMP). The intervention arm will receive the above standard therapy, plus additional IVIG. Primary outcome will be a 2-point improvement on the American Spinal Injury Association (ASIA) Impairment scale at 6 months postrandomisation by blinded assessors. Additional secondary and tertiary outcome measures will be collected: ASIA motor and sensory scales, Kurtzke expanded disability status scale, International Spinal Cord Injury (SCI) Bladder/Bowel Data Set, Client Services Receipt Index, Pediatric Quality of Life Inventory, EQ-5D, SCI Pain and SCI Quality of Life Data Sets. Biological samples will be biobanked for future studies. After 6-months' follow-up of the first 52 recruited patients futility analysis will be carried out. Health economics analysis will be performed to calculate cost-effectiveness. After 6 months’ recruitment futility analysis will be performed

    On the Communication of Scientific Results: The Full-Metadata Format

    Full text link
    In this paper, we introduce a scientific format for text-based data files, which facilitates storing and communicating tabular data sets. The so-called Full-Metadata Format builds on the widely used INI-standard and is based on four principles: readable self-documentation, flexible structure, fail-safe compatibility, and searchability. As a consequence, all metadata required to interpret the tabular data are stored in the same file, allowing for the automated generation of publication-ready tables and graphs and the semantic searchability of data file collections. The Full-Metadata Format is introduced on the basis of three comprehensive examples. The complete format and syntax is given in the appendix
    • …
    corecore