132 research outputs found

    Acceptance or rejection? The social experiences of children with special educational needs and disabilities within a mainstream primary school

    Get PDF
    This article details a study which investigated the social acceptance and friendships of children with SEND, and their typically developing peers, at a mainstream primary school in the North West of England. Participants were 29 children aged five and six years old, separated into three groups; typically developing children, children who were being monitored for SEND, and children with formally identified SENDs. With the use of a peer nomination sociometric technique, findings revealed that children with SEND had less promising peer relations and friendships compared to children tracked for SEND and their typically developing peers, consequently questioning the mainstream ‘ideal’. © 2018, © 2018 ASPE

    Work done in the margins:A comparative study of mental health literacy in pre-service teacher education in Australia and in Scotland

    Get PDF
    Ensuring pre-service teachers have strong mental health literacy is vital for progress towards an inclusive, effective education system; yet little is known about how pre-service teachers are prepared for practice with school students who present with poor mental health. The original, internationally comparative small-scale (N = 24) qualitative study reported here compared current mental health literacy provision to pre-service teacher education students in Scotland and Australia. Semi-structured telephone interviews with teacher educators who delivered mental health content divulged highly variable, often ad-hoc mental health literacy provision; a concern, given the prevalence of poor mental health affecting children and young people in schools. Thematic data analysis revealed striking commonalities among issues raised by participants from both countries, highlighting the need for urgent improvement in the provision of mental health literacy to pre-service teachers. Results suggest the possibility of strategically developing a joint Australian-Scottish mental health component suitable for delivery in both countries

    Noncoding RNA Mediated Traffic of Foreign mRNA into Chloroplasts Reveals a Novel Signaling Mechanism in Plants

    Get PDF
    Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs) are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5′UTR-end mediates the functional import of Green Fluorescent Protein (GFP) mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5′UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    The Virtual-Spine Platform—Acquiring, visualizing, and analyzing individual sitting behavior

    Get PDF
    Back pain is a serious medical problem especially for those people sitting over long periods during their daily work. Here we present a system to help users monitoring and examining their sitting behavior. The Virtual-Spine Platform (VSP) is an integrated system consisting of a real-time body position monitoring module and a data visualization module to provide individualized, immediate, and accurate sitting behavior support. It provides a comprehensive spine movement analysis as well as accumulated data visualization to demonstrate behavior patterns within a certain period. The two modules are discussed in detail focusing on the design of the VSP system with adequate capacity for continuous monitoring and a web-based interactive data analysis method to visualize and compare the sitting behavior of different persons. The data was collected in an experiment with a small group of subjects. Using this method, the behavior of five subjects was evaluated over a working day, enabling inferences and suggestions for sitting improvements. The results from the accumulated data module were used to elucidate the basic function of body position recognition of the VSP. Finally, an expert user study was conducted to evaluate VSP and support future developments

    Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Escalating trends of obesity and associated type 2 diabetes (T2D) has prompted an increase in the use of alternative and complementary functional foods. <it>Momordica charantia </it>or bitter melon (BM) that is traditionally used to treat diabetes and complications has been demonstrated to alleviate hyperglycemia as well as reduce adiposity in rodents. However, its effects on human adipocytes remain unknown. The objective of our study was to investigate the effects of BM juice (BMJ) on lipid accumulation and adipocyte differentiation transcription factors in primary human differentiating preadipocytes and adipocytes.</p> <p>Methods</p> <p>Commercially available cryopreserved primary human preadipocytes were treated with and without BMJ during and after differentiation. Cytotoxicity, lipid accumulation, and adipogenic genes mRNA expression was measured by commercial enzymatic assay kits and semi-quantitative RT-PCR (RT-PCR).</p> <p>Results</p> <p>Preadipocytes treated with varying concentrations of BMJ during differentiation demonstrated significant reduction in lipid content with a concomitant reduction in mRNA expression of adipocyte transcription factors such as, peroxisome proliferator-associated receptor γ (PPARγ) and sterol regulatory element-binding protein 1c (SREBP-1c) and adipocytokine, resistin. Similarly, adipocytes treated with BMJ for 48 h demonstrated reduced lipid content, perilipin mRNA expression, and increased lipolysis as measured by the release of glycerol.</p> <p>Conclusion</p> <p>Our data suggests that BMJ is a potent inhibitor of lipogenesis and stimulator of lipolysis activity in human adipocytes. BMJ may therefore prove to be an effective complementary or alternative therapy to reduce adipogenesis in humans.</p

    Role of Biotransformation Studies in Minimizing Metabolism-Related Liabilities in Drug Discovery

    Get PDF
    Metabolism-related liabilities continue to be a major cause of attrition for drug candidates in clinical development. Such problems may arise from the bioactivation of the parent compound to a reactive metabolite capable of modifying biological materials covalently or engaging in redox-cycling reactions leading to the formation of other toxicants. Alternatively, they may result from the formation of a major metabolite with systemic exposure and adverse pharmacological activity. To avert such problems, biotransformation studies are becoming increasingly important in guiding the refinement of a lead series during drug discovery and in characterizing lead candidates prior to clinical evaluation. This article provides an overview of the methods that are used to uncover metabolism-related liabilities in a pre-clinical setting and offers suggestions for reducing such liabilities via the modification of structural features that are used commonly in drug-like molecules

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon
    corecore