21 research outputs found

    Schistosoma mansoni venom allergen-like proteins:Phylogenetic relationships, stage-specific transcription and tissue localization as predictors of immunological cross-reactivity

    Get PDF
    O artigo encontra-se disponível para download no site do Editor.Submitted by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:23:01Z No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Approved for entry into archive by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:39:31Z (GMT) No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Made available in DSpace on 2019-07-15T18:39:31Z (GMT). No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5) Previous issue date: 2019Welcome Trust (UK) (WT084273/Z/07/Z) to KFH, Fundação Butantan, Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil) to LPF and LLC (2012/23124-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to LCCL and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, and by fellowships from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil) to LPF (2008/57946-5) and HKF (2007/07685-8) and from CNPq to MIK (160861/2017-9). We thank Dra. Eliana Nakano and Ms. Patricia A. Miyasato for supplying the parasite stages and to Alexsander Seixas de Souza for confocal microscopy (FAPESP 00/11624-5) imaging support, all from Instituto Butantan, Brazil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Universidade de São Paulo. Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.Leiden University Medical Centre. Center for Proteomics and Metabolomics. RC Leiden, The Netherlands.Leiden University Medical Centre. Department of Parasitology. RC Leiden, The Netherlands.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Schistosoma mansoni venom allergen-like proteins (SmVALs) are part of a diverse protein superfamily partitioned into two groups (group 1 and group 2). Phylogenetic analyses of group 1 SmVALs revealed that members could be segregated into subclades (A-D); these subclades share similar gene expression patterns across the parasite lifecycle and immunological cross-reactivity. Furthermore, whole-mount in situ hybridization demonstrated that the phylogenetically, transcriptionally and immunologically-related SmVAL4, 10, 18 and 19 (subclade C) were all localized to the pre-acetabular glands of immature cercariae. Our results suggest that SmVAL group 1 phylogenetic relationships, stage-specific transcriptional profiles and tissue localization are predictive of immunological cross-reactivity

    On the three-finger protein domain fold and CD59-like proteins in Schistosoma mansoni

    Get PDF
    Background: It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings: Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions: Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, Grant Number:04/12872-3)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)National Institute of Health, National Institute of Allergy and Infectious Diseases (NIH-NIAID), Grant AI-095893NIH-NIAID Grant AI-056273FAPESP 00/11624-

    New recombinant Mycobacterium bovis BCG expression vectors : improving genetic control over mycobacterial promoters

    Get PDF
    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovis BCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response

    Synergy of Omeprazole and Praziquantel <i>In Vitro</i> Treatment against <i>Schistosoma mansoni</i> Adult Worms

    No full text
    <div><p>Background</p><p>Treatment and morbidity control of schistosomiasis relies on a single drug, praziquantel (PZQ), and the selection of resistant worms under repeated treatment is a concern. Therefore, there is a pressing need to understand the molecular effects of PZQ on schistosomes and to investigate alternative or synergistic drugs against schistosomiasis.</p><p>Methodology</p><p>We used a custom-designed <i>Schistosoma mansoni</i> expression microarray to explore the effects of sublethal doses of PZQ on large-scale gene expression of adult paired males and females and unpaired mature females. We also assessed the efficacy of PZQ, omeprazole (OMP) or their combination against <i>S</i>. <i>mansoni</i> adult worms with a survival <i>in vitro</i> assay.</p><p>Principal Findings</p><p>We identified sets of genes that were affected by PZQ in paired and unpaired mature females, however with opposite gene expression patterns (up-regulated in paired and down-regulated in unpaired mature females), indicating that PZQ effects are heavily influenced by the mating status. We also identified genes that were similarly affected by PZQ in males and females. Functional analyses of gene interaction networks were performed with parasite genes that were differentially expressed upon PZQ treatment, searching for proteins encoded by these genes whose human homologs are targets of different drugs used for other diseases. Based on these results, OMP, a widely prescribed proton pump inhibitor known to target the ATP1A2 gene product, was chosen and tested. Sublethal doses of PZQ combined with OMP significantly increased worm mortality <i>in vitro</i> when compared with PZQ or OMP alone, thus evidencing a synergistic effect.</p><p>Conclusions</p><p>Functional analysis of gene interaction networks is an important approach that can point to possible novel synergistic drug candidates. We demonstrated the potential of this strategy by showing that PZQ in combination with OMP displayed increased efficiency against <i>S</i>. <i>mansoni</i> adult worms <i>in vitro</i> when compared with either drug alone.</p></div

    Enriched gene interaction network detected with similar expression pattern in PZQ-treated paired males and females.

    No full text
    <p>The gene interaction network is related to carbohydrate metabolism, molecular transport and small molecule biochemistry. The shapes of elements correspond to different types of molecules, as indicated in the inset box. Arrows indicate the relationship between the elements: dashed or solid lines indicate indirect or direct interactions, respectively. The color intensity is proportional to expression value, computed as log2 [PZQ/Control]; red corresponds to positive log-ratios, <i>i</i>.<i>e</i>. genes up-regulated in paired males and females treated with PZQ when compared with their respective no-drug controls, grey corresponds to those genes present in the analysis but not differentially expressed. In humans, one gene homolog in this network encodes a protein that is a known drug target and the corresponding drugs (Rx) are indicated.</p

    Global transcriptional changes driven by PZQ on <i>S</i>. <i>mansoni</i> adult worms.

    No full text
    <p>Overall summary with the names of the associated functional interaction networks identified as significantly enriched with differentially expressed <i>S</i>. <i>mansoni</i> genes in different comparisons: (A) genes affected by PZQ in opposite directions in paired or unpaired mature females, (B) all genes affected by PZQ in paired females, (C) all genes affected by PZQ in unpaired mature females, (D) all genes affected by PZQ in paired males, (E) genes affected in common in paired males and females. Color arrows indicated the direction of change in expression of the majority of the genes in each network: green implies a down-regulated expression of the majority of the genes in PZQ-treated worms, and red an up-regulated expression of the majority of the genes in PZQ-treated worms when compared with their respective no-drug controls. Rx corresponds to the identification of new candidate drugs known to act on the encoded protein products of the homolog human genes present in the indicated network, as described in the main text.</p

    Most significantly enriched interaction network of differentially expressed genes in PZQ-treated paired males.

    No full text
    <p>The gene interaction network is related to cellular assembly and organization, cell-to-cell signaling and interaction. The shapes of elements correspond to different types of molecules, as indicated in the inset box. Arrows indicate the relationship between the elements: dashed or solid lines indicate indirect or direct interactions, respectively. The color intensity is proportional to expression value, computed as log2 [PZQ/Control]; red corresponds to positive log-ratios, <i>i</i>.<i>e</i>. genes up-regulated in paired males treated with PZQ when compared with no-drug controls, green corresponds to negative log-ratios, <i>i</i>.<i>e</i>. down-regulated genes, and grey corresponds to those genes present in the analysis but not differentially expressed. Two genes from this network encode human proteins that are known drug targets and the corresponding drugs (Rx) are indicated.</p

    Validation by RT-qPCR of expression changes induced by PZQ treatment in <i>S</i>. <i>mansoni</i> adult worms.

    No full text
    <p>The expression levels of genes were measured by RT-qPCR in parasites treated with PZQ (black bars) relative to the levels in the respective no-drug control parasites (gray bars). Genes were measured (A) in paired females; (B) in unpaired mature females; (C) in paired males; and (D) in paired females. Genes with significant difference (t-test, p < 0.05) are marked with asterisk. Next to each gene name, the gene expression fold-change induced by PZQ and detected by microarray is shown for comparison.</p

    General information about gene expression of paired or unpaired mature females exposed to PZQ compared with no-drug controls.

    No full text
    <p><sup>a</sup> Number of genes expressed in at least one condition, <i>i</i>.<i>e</i>. in no-drug control or in treated worms of either the paired or the unpaired worm groups.</p><p><sup>b</sup> q-value < 5%</p><p><sup>c</sup> Either predicted in <i>S</i>. <i>japonicum</i>, present in other species, or detected only in <i>S</i>. <i>mansoni</i> without close homologs in other species (no match).</p><p>General information about gene expression of paired or unpaired mature females exposed to PZQ compared with no-drug controls.</p
    corecore