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Abstract

Background: It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on
their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack
complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules
could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy.

Methodology/Principal Findings: Herein, we describe the molecular characterization of seven putative SmCD59-like genes
and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of
hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the
conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR
and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to
adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-
like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms.
Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i)
a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of
CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after
gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement
activation.

Conclusions: Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated
to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using
SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their
function in schistosomes remains to be determined.
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Introduction

Schistosomiasis is an important parasitic disease, caused by

trematode worms of the genus Schistosoma, affecting more than 200

million people worldwide, with a further 650 million individuals

living at risk of infection, remaining a major public health problem

in many developing countries [1].

Adult worms are able to survive for decades in the hostile blood

environment of their vertebrate host, apparently unharmed by

circulating leukocytes, antibodies and the complement system.

Thus, the parasite must have developed strategies to evade the

host’s immune defenses. One of the most important modifications

is the new tegument surface organization that develops immedi-

ately after penetration of cercariae into the skin and their

transformation into schistosomula. The tegument is a thin

syncytial layer that covers the whole parasite, limited by a basal

membrane and a multilaminate surface membrane complex,

which constitutes the major host–parasite interface [2].

Schistosomula are at first sensitive to complement killing, but

rapidly become highly resistant to complement attack by both the
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Classical [3,4] and Alternative Pathways [5,6]. The later

developmental stages of the parasite, i.e., the lung schistosomula

and adult worms, have also been shown to be refractory to both

pathways of complement [3,6,7,8]. Intravascular parasites must

also be resistant to a third complement activation pathway - the

Lectin Pathway [9]. However, the precise mechanisms of

complement resistance have not been fully characterized.

The strategies used by the parasite to subvert complement

attack are most likely related to the function and composition of

the tegument (reviewed by [10]). The apical membrane is

considered poorly immunogenic due to the limited number of

exposed proteins and the acquisition of a variety of host

molecules, which may mask important surface proteins

[11,12,13]. Shedding of the outer coat has been considered as

a mechanism to eliminate surface-bound complement and

immune-complexes [14]. There are also reports of serine

proteases in the surface of freshly transformed schistosomula,

lung stage and adult worms, that may play a role in complement

resistance by cleaving immuno-complexes and complement

proteins [15,16].

One of the most intriguing strategies that has been proposed as

a mechanism by which schistosomes escape complement attack

involves the presence in the tegument of several complement

regulatory proteins, including two of host origin (reviewed by

[17,18]). The binding activity to the complement components C1

[19,20], C3 [21,22,23] and C8/C9 [24], have been reported to be

present at the surface of schistosome parasites. It is important to

note that while some of these parasite proteins (e.g. paramyosin)

have been isolated and shown to interact with complement

components in vitro, the definitive protective role of these proteins

in vivo has not yet been demonstrated.

In the last seven years, several proteomics studies attempted to

define the tegument protein composition, as well as its surface

exposed molecules [25]. From these studies, one surprising finding

was the detection of the host complement components C3 and C4,

but not those required for formation of the Membrane Attack

Complex (MAC), i.e. C5b to C9 molecules, as revealed by

biotinylation studies of the tegument surface [12]. A reasonable

explanation is that the complement fixation is initiated, but then

inhibited to prevent MAC formation. A mouse C3 complement

regulatory (Crry)-like molecule has also been detected on the

tegument surface by proteomics [12].

Host cells are protected from MAC-mediated lysis mainly by

CD59, a 18–21 kDa glycosylphosphatidyl-inositol-linked mem-

brane glycoprotein that inhibits polymerization of C9 by

binding to C8a and C9 [26], thus preventing the formation of

the cytolytic MAC. Earlier studies indicated that the exposed

form of the schistosome muscle protein paramyosin, was able

to inhibit the assembly of C5b-9 by binding to C8 and C9;

additionally, this protein was reportedly recognized by rabbit

anti-human CD59 antiserum [27]. However, the in vivo

significance of paramyosin-complement interactions still awaits

further clarification.

Recently, Wilson and Coulson [28] identified in the

schistosome genome six homologues of human CD59,

containing 20–30% amino acid identity which rise to .40%

if conservative amino acid substitutions are included. One of

these molecules (CD59b, formerly Dif 5) was described by our

group as a vaccine candidate, due to its up-regulated

expression in the schistosomulum stage [29]. Furthermore,

in another approach to select vaccine candidates, two

members of this family (CD59a and CD59b) were identified

within a group of molecules exposed on the parasite’s

tegument by proteomics and molecular shaving with phos-

phatidylinositol-specific phospholipase C (PiPL-C) treatment of

live adult worms [13]. More recently, two other isoforms

similar to CD59 (Smp_166340 and Smp_081920, GeneDB,

(http://www.genedb.org/Homepage/Smansoni) were reported

as membrane-associated tegumental proteins by proteomic

analysis [25]. Therefore, it is tempting to speculate whether

these six homologues could act as CD59-like complement

inhibitors in schistosomes as part of an immune evasion

strategy, especially because two of them were found on the

tegument surface.

The CD59 family possesses the Three-Finger Protein

Domain fold (TFPD) [30], that is also a feature of proteins

with several distinct sequence and structural attributes, such as

the receptors of activins, bone morphogenetic proteins,

Mullerian inhibiting substance, transforming growth factor-b
receptor II, C4.4a (a structural homologue of the urokinase

receptor), urokinase/plasminogen activatory receptor (uPAR)

and several members of Ly6 family. The Ly6 molecules

(lymphocyte differentiation antigens) were among the first cell

surface molecules identified in mouse [31] and there is

emerging evidence showing their role in cell signaling, cell

adhesion and cellular activation [32]. The TFPD superfamily

is characterized by the structural conservation of at least six

half-cystines forming three disulfide bridges (B1, B2 and B4),

five b-strands and one asparagine adjacent to the N-terminal

of the last half-cystine from the last disulfide bridge B4 [33].

A very striking characteristic of this domain is the finger-

shaped spatial conformation that the amino acid backbone

acquires between the two half-cystines of the same disulfide

bridge [30].

In the current work, we describe the molecular character-

ization of seven putative SmCD59-like genes from genome

assembly version 5 (http://www.genedb.org/Homepage/

Smansoni) and attempt to address their putative biological

function. Our data confirms up-regulation in the transition to

intra-host stages. However, the functional studies performed

with the two CD59-like members (CD59a and CD59b,

named in this study as SmCD59.1 and SmCD59.2),

previously identified at the host-parasite interface, did not

show any complement inhibition activity. Therefore, the

Author Summary

Schistosomes are parasites that reside for many years in
the blood stream, demanding efficient mechanisms of
evading immune response effectors such as complement
deposition. A group of genes similar to human CD59, an
important complement inhibitor in mammals, were iden-
tified in the schistosome genome. Computer predictions of
protein structure indicated substantial similarity of the
schistosome proteins and the mammalian CD59 family of
proteins, which due to their three-finger-shaped spatial
conformation are members of the Three-Finger Protein
Domain fold superfamily (TFPD). Members of this family of
schistosome proteins were also shown to be expressed
predominantly during the mammalian stages when worms
are exposed to complement and found to be present at
the host-interactive surface of schistosomes. Three differ-
ent methods were employed to test the possible involve-
ment of these proteins in complement inhibition. Our
results strongly suggest that these proteins are not
involved in the inhibition of complement and that further
studies are needed to establish their functional role(s) in
schistosomes.
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function of these seven proteins in schistosomes remains to

be established.

Materials and Methods

Parasite material
The life cycle of S. mansoni (BH strain) was maintained in the

laboratory by routine passage through mice and the intermediate

snail host Biomphalaria glabrata. S. mansoni eggs were extracted from

infected mouse livers and miracidia were hatched from S. mansoni

eggs, as previously described [34]. Schistosomula were cultivated

in culture medium after transformation of cercariae, as previously

described [35]. Adult worms were obtained by perfusion of the

portal hepatic and intestinal veins from hamsters, 7–8 weeks after

infection with approximately 100 cercariae.

Ethics statement
The procedures involving animals were carried out in accor-

dance with the Brazilian legislation (11790/2008). All animals

were handled in strict accordance with good animal practice and

protocols were previously approved by the Ethical Committee for

Animal Research of Butantan Institute (CEUAIB, São Paulo,

Brazil), under the license number 603/09.

Molecular characterization and 3D modeling
The SmCD59 nucleotide sequences were identified searching

the v5.0 of S. mansoni genome assembly (GeneDB) (http://www.

genedb.org/genedb/smansoni/). The search for conserved do-

mains was performed using SMART (http://smart.embl-

heidelberg.de/). The molecular weight (MW) and isoelectric point

(pI) were calculated with the Compute pI/Mw tool (http://www.

expasy.ch/tools/pi_tool.html).

Post-translational modification predictions: the signal peptide

prediction was performed using the SignalP 4.0 server (http://

www.cbs.dtu.dk/services/SignalP/) [36]; potential GPI-modifica-

tion sites were analyzed by big-PI Predictor (http://mendel.imp.

ac.at/sat/gpi/gpi_server.html) [37]; and N-glycosylation sites with

the NetNGlyc version 1.0 algorithm. Protein sequences alignments

were performed using the ClustalX 2 software. Homology

modeling was done with MODELLER [38] using the crystal

structure of human CD59 (hCD59) (2UWR) as a template. The

modeled structure was visualized with PyMOL (The PyMOL

Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC)

and the stereochemical quality of the model was examined using

the program PROCHECK [39], which evaluates the geometry of

residues in the model when compared with the stereochemical

parameters from the template. Additional algorithms such as

WHAT_CHECK, ERRAT, VERIFY_ 3D, PROVE and

CRYST1 record matches (available from: http://services.mbi.

ucla.edu/SAVES/) were also used to assess the quality of the

model generated.

Sequence and phylogenetic analysis
We searched the Schistosoma Genomic Resources SchistoDB

(V3.0) (http://schistodb.net/schisto/) and the GenBank (http://

www.ncbi.nlm.nih.gov/) to identify similar sequences in S. mansoni,

S. japonicum and S. hematobium, using SmCD59.1 and SmCD59.2 as

queries. Additionally, BLAST and PSI-BLAST searches against

the non-redundant protein sequence database were used to

identify similar sequences in other Platyhelminthes (http://

smedgd.neuro.utah.edu/blast.php and http://bioinfosecond.vet.

unimelb.edu.au), as well as in representative mammals. For

phylogenetic analysis, alignments of protein sequences were

performed using the ClustalX 2 software. The tree was

constructed using ClustalX 2 using the Neighbor-Joining method.

The numbers represent the confidence of the branches assigned by

bootstrap (in 1000 samplings). The TreeView program [40] was

used to visualize and analyze the tree.

Real-time RT-PCR
In order to establish the level of expression of each SmCD59

gene throughout the parasite life cycle, total RNA was extracted

from adult worms using TRIzol (Life Technologies) and from

schistosomula, cercariae, miracidia and eggs using the Kit

RNAspin mini (GE Healthcare, USA), as per the manufacturer’s

recommendations. The RNA was quantified by spectrophotom-

etry (NanoDrop 1000, Thermo Fischer Scientific) and the quality

was analyzed in the Agilent 2100 Bioanalyzer. The cDNA

synthesis and the quantitative Real-Time PCR (qRT-PCR)

reactions using SYBR Green (Life Technologies) were performed

according to [41]. The primers were designed in the software

Primer Express (Applied Biosystems) to span exon/exon bound-

aries avoiding amplification of contaminating genomic DNA

(Table S1). S. mansoni alpha-tubulin (Smp_090120.1) was chosen as

normalizing gene. Quantitation of relative differences in expres-

sion between the stages was calculated by the comparative 22DDCt

method [42], using the parasite stage with lowest gene expression

as calibrator for each gene independently.

In an attempt to compare the levels of gene expression among

the seven different SmCD59 isoforms, we performed qRT-PCR

using TaqMan Gene Expression Assay (Life Technologies/

Applied Biosystems, CA) as previously described [43]. The life

cycle stages examined were cercariae, schistosomula cultured for

11 days and adults. RNA was extracted from each life cycle stage

using the Trizol method (Life Technologies, CA) and the cDNA

was synthesized using 1 mg of high quality total RNA, pre-treated

with TurboDNAse (Life Technologies), oligo(dT) and Superscript

reverse transcriptase III (Life Technologies). qRT-PCR was

performed using cDNA equivalent to 50 ng total RNA. The set

of primers and MGB reporter probe, labeled with 6-carboxy-

fluorescein (FAM) specific for the detection of each SmCD59 were

custom synthesized by Applied Biosystems (Life Technologies) and

are shown in Table S1. Primers/probe positions were designed to

span exon/exon boundaries to minimize detection of any

contaminating genomic DNA. The qRT-PCR reactions were

run in triplicate and underwent 45 amplification cycles on the

StepOne Plus System Instrument (Applied Biosystems). The

22DDCt method was employed for relative quantification [42]

with S. mansoni triose phosphate isomerase (SmTPI, Smp_003990)

as the normalizing gene. We used the expression of SmCD59.6

from adult worm stage as calibrator to calculate the relative

expression of all other SmCD59 analyzed, because this gene had

the lowest expression in adult worms.

DNA constructs - gene optimization and synthesis
The sequence from S. mansoni EST assembled contig SmCD59.2

(Smp_105220, GeneDB) was redesigned excluding the signal

peptide sequences and manufactured by DNA 2.0, Inc. USA

(https://www.dna20.com/) using DNA2.0 optimization algo-

rithms for expression in Pichia pastoris (Table S1). The fragments

corresponding to the mature protein sequences for SmCD59.1

(Smp_019350, GeneDB) (from H28 to F126) and SmCD59.2

(from K21 to A97) were digested with EcoRI and XbaI to generate

inserts with overhang ends that were purified and cloned into the

same sites for the expression vector pPICZaA (Life Technologies),

to produce a protein that contained a C-terminal hexa-histidine

tag. The resulting constructs were sequenced to confirm their

identity.

On the CD59-Like proteins in Schistosoma mansoni
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The SmCD59.2 was also expressed and purified from E. coli.

The 59 and 39 oligonucleotides were designed using the S. mansoni

genome assembly sequence (Smp_105220). The SuperScriptTM

First-Strand Synthesis System for RT-PCR (Life Technologies)

was used to amplify a fragment from C27 to H101 of the mature

SmCD59.2 protein. The PCR fragments were purified from

agarose gel electrophoresis and digested with XhoI and KpnI to be

cloned into pAE-6His vector [44] and sequenced to confirm

identity.

Expression and purification of recombinant SmCD59.1
and SmCD59.2 in Pichia pastoris

The plasmids containing the gene fragments pPICZ-a-

SmCD59.1 and pPICZ-a-SmCD59.2 (optimized sequence), were

linearized with SacI and used to transform P. pastoris strain GS115

(Life Technologies) by electroporation. Putative multi-copy

recombinants were selected following the instructions of the

manufacturer. To verify production of the relevant proteins, initial

studies were done in small-scale expression conditions, followed by

Western blot with anti-His-tag antibody (GE). Fermentation

conditions for selected clones were carried out in BMGY media

(15 mL) at 28–30uC in a shaking incubator until cultures reached

an OD600 = 2.0 (approximately 16–18 h), as per manufacturer’s

recommendations. Induction was performed by addition of

methanol to a final concentration of 0.5% every 24 h; expression

was monitored at 48 and 96 h time points. The supernatants and

cell pellets for 10 colonies of each SmCD59 were analyzed for

protein expression by Western blot. The colonies that presented

the highest expression level were selected for scale-up fermenta-

tion.

For protein expression and purification, selected clones were

scaled-up for growth in 300 mL in 2.0 L baffled flasks under the same

conditions. Cells were harvested after 96 h by centrifugation. The

culture medium containing the secreted proteins were filtered

through a 0.22 mm membrane, and diluted with 3 volumes of

equilibration buffer (20 mM sodium phosphate, 300 mM NaCl,

10 mM imidazole, pH 7.4 (for rSmCD59.1) and pH 8.0 (for

rSmCD59.2). The recombinant proteins were then purified by metal

affinity chromatography using the ÄKTAprime system (GE

Healthcare) under native conditions. Briefly, the sample was loaded

onto a Ni2+-NTA column (5 mL bed volume) pre-equilibrated with

the same buffer. The column was washed with 20 bed volumes of the

equilibration buffer and then eluted with a 20–500 mM imidazole

linear gradient. Fractions encompassing the main peak were

characterized by sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE). Eluted fractions containing the recombinant

protein in near pure form were pooled and submitted to extensive

dialysis in Phosphate Buffer Saline pH 7.4 (PBS). This sample was

analyzed by SDS-PAGE and stained with Schiff’s reagent (Sigma) for

detection of glycoproteins as per the manufacturer’s recommenda-

tions. Bovine Serum Albumin (BSA) (Bio-Rad) (non-glycosylated

protein) and rSmVAL4 (glycosylated protein) were used as controls

for the specificity of the reaction [45]. The rSmCD59.1 and

rSmCD59.2 proteins expressed in P. pastoris were glycosylated

(products between 14.4 kDa and 20.1 kDa), based on their staining

with Schiff’s reagent and increased size in SDS-PAGE (as can be

observed by the protein band shift in comparison to the rSmCD59.2

expressed in E. coli (Figure S1). Both recombinant proteins were used

in the hemolytic assay and to generate polyclonal antibodies in rats.

Expression of recombinant SmCD59.2 in Escherichia coli
The pAE-SmCD59.2 was transformed into E.coli BL21 (SI)

(Life Technologies) and the transformed cells were grown in

300 mL LB ON plus ampicillin (100 mg/mL) until they reached

an OD600 = 0.7, after which induction was performed by

addition of 300 mM sodium chloride (NaCl) for another 4 h at

30uC. Harvested cells resuspended in 30 mL of lysis buffer

(20 mM Tris pH 8.8, 150 mM NaCl) were lysed in a French

Press. The pelleted inclusion bodies obtained by centrifugation

at 20,0006 g for 30 min were washed twice with wash buffer

(lysis buffer, 2% Triton X-100, 2 M urea), and finally

resuspended in solubilization buffer (lysis buffer, 10 mM

imidazole, 8 M urea). The recombinant protein was refolded

from the inclusion bodies by diluting 200-fold into equilibration

buffer (solubilization buffer without urea). The recombinant

protein was then purified by metal-affinity chromatography

using the ÄKTAprime system under native conditions. Briefly,

the sample was loaded onto a Ni2+-NTA column pre-

equilibrated with equilibration buffer. The column was washed

with 10 bed volumes of the equilibration buffer and then eluted

with 10–500 mM imidazole linear gradient. The main peak was

pooled and the protein purity of fractions was assessed by SDS-

PAGE. Before its use the protein was dialyzed against PBS,

pH 7.4. This sample was used in the hemolytic assay and to

generate polyclonal antibodies in rats.

Polyclonal rat antiserum was produced against the preparations

of rSmCD59.1 (P. pastoris) and rSmCD59.2 (E. coli). Rodents were

inoculated three times subcutaneously, at 15-day intervals with

100 mg of protein mixed with TiterMax adjuvant (CytRx

Corporation; first dose) or PBS (in subsequent doses). Fifteen days

after the last inoculation, rodents were exsanguinated.

Schistosome protein extraction
Total protein extracts from eggs, miracidia, cercariae, 7 day-old

schistosomula and adult worms of S. mansoni were prepared as

previously described [41]. The tegument extract was obtained

using a freeze/thaw/vortex procedure [46].

Tegument surface membranes (Tsm) and tegument-extract

without-surface membranes (Twm) were obtained after a low

speed centrifugation (1006 g, 30 min) (adapted from [46]).

Additionally, soluble (Sol) and insoluble (Ins) fractions of stripped

worms after tegument removal were prepared as previously

described [47]. The protein extract concentrations were deter-

mined with a RC DC Protein Assay Kit (Bio-Rad, CA, USA).

Purified rSmCD59.1 or rSmCD59.2 (100 ng) and different

parasite extracts (20 mg) were subjected to SDS-PAGE. The gel

was electroblotted onto PVDF membrane, which was blocked with

0.02 M Tris (pH 7.5) and 0.3% Tween 20 containing 5% dry milk

for 16 h at 4uC. The membranes were incubated in 1:2,000 or

1:5,000 dilution of anti-rSmCD59.1 and anti-rCD59.2 primary

antibody, respectively in blocking buffer plus 150 mM NaCl for

3 h at room temperature. After three washes using 150 mL of

10 mM Tris (pH 7.5), the membranes were incubated in a 1:5,000

dilution with secondary goat anti-rat IgG conjugated to horserad-

ish peroxidase (Sigma) for 1 h, followed by another three washes

using the same buffer. Antibody reactivity was developed with

ECL reagent (GE Healthcare) according to the manufacturer’s

instructions and imaged using Hyperfilm or Image Quant LAS

(GE Healthcare).

Indirect immunofluorescence and confocal microscopy
Immunocytochemistry on whole adult worms followed a

previously described protocol [48]. Briefly, adult worms were

fixed in 4% paraformaldehyde for 4 h, washed in PBS (0.1 M,

pH 7.4) for 1 h and then transferred to a fresh fixative for another

3 h. After permeabilization with 1% Triton X-100, 0.1% SDS,

10% (heat-inactivated) rabbit serum, 0.1% NaN3 in PBS overnight

at 4uC, the worms were incubated with primary antibody, diluted

On the CD59-Like proteins in Schistosoma mansoni
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1:200, for 96 h at 4uC. After extensive washes, the worms were

incubated for 48 h with 100 ng/mL of Phalloidin-rhodamine

(Molecular Probes, Life Technologies), to stain the musculature of

the parasite, and with Alexa Fluor 488-labeled rabbit-anti-rat

antibody (1:200, Molecular Probes, USA) in PBS containing 0.1%

Triton X-100, 1% BSA, 0.1% NaN3 and 10% rabbit serum at

4uC. After several rinses, the worms were visualized with a LSM

510 Meta confocal microscope (Zeiss), attached to a Zeiss Axiovert

100 microscope.

For cryosection analysis, perfused adult worms were embedded

in OCT medium (Tissue-Tek, Sakura) in a pre-cooled beaker of

isopentene, frozen in liquid N2. Eight-micrometer cryostat adult

worm sections were obtained and adhered to silanized glass slides

(DakoCytomation, USA) and fixed in acetone for 30 min at

220uC before blocking with 16 PBS, 10% Naive rabbit serum

and 0.1% Tween 20 (PNT) overnight at 4uC. They were then

incubated with anti-rSmCD59.1 and anti-rSmCD59.2 anti-serum

diluted 1:100 in PNT for 4 h at room temperature. After five

washes with PBS 0.1% Tween 20, pH 7.4 (PBS-T), an Alexa Fluor

488 conjugated anti-rat IgG (1:200) (Life Technologies) and

20 mM DAPI (49, 6-diamidino-2-phenylindole dihydrochloride,

Molecular Probes) to visualize nuclei were added to the PNT

solution and samples were incubated for 1 h at room temperature.

Sections were washed five times, and then mounted in Fluorescent

Mounting Medium (DakoCytomation). Rat pre-immune sera were

used as negative control. Images were acquired as described

above.

Hemolytic assays
Briefly, to evaluate Alternative Pathway activity, washed rabbit

erythrocytes (ERs) were diluted in AP-CFTD (144 mM NaCl,

0.96 mM sodium barbital, 2.48 mM barbituric acid, 1.4 mM

MgCl2, 10 mM EGTA) and then added to Normal Human Serum

(NHS) (serial dilutions 1:4 to 1:256). After incubation at 37uC for

30 min, VBS2EDTA (144 mM NaCl, 0.96 mM sodium barbital,

2.48 mM barbituric acid, 20 mM EDTA) was added to stop lysis.

After centrifugation (0.86 g for 10 min at 4uC) the supernatant

absorbance was measured at 405 nm and percentage hemolysis

was calculated using ERs lysed by water as the 100% reference.

The serum volume that produced 50% lysis of ERs was

determined and used in the inhibition assays [49,50]. To evaluate

the hemolytic activity mediated by the Classical Pathway, washed

antibody-sensitized sheep erythrocytes (EAs) were diluted in

VBS++ (144 mM NaCl, 0.96 mM sodium barbital, 2.48 mM

barbituric acid, 0.83 mM MgCl2, 0.25 mM CaCl2) and were

added to NHS (serial dilutions 1:20 to 1:500). After incubation at

37uC for 30 min, samples were centrifuged (0.86 g for 10 min at

4uC) and the supernatant absorbance at 405 nm was measured.

The hemolysis percentage (relative to EAs suspension completely

lysed by water) was calculated. The volume of serum necessary to

promote 50% lysis of EAs was determined and used in the

inhibition assays [50].

Inhibition assays were performed to evaluate if the proteins

rSmCD59.1 and rSmCD59.2 (produced in P. pastoris and in E. coli)

were able to protect ERs from the lysis triggered by the Alternative

Pathway, or EAs from the lysis by the Classical Complement

Pathway. BSA (Sigma-Aldrich) was used as a negative control.

Different amounts of the proteins (0, 2, 5 and 10 mg for the

Alternative Pathway, and 0, 1, 2 and 4 mg for the Classical

Pathway) were pre-incubated with NHS (corresponding to 50%

lysis) for 20 min at 37uC. Washed ERs (3.56106) or EAs (6.76104)

were incubated with treated NHS for 30 min at 37uC. After

centrifugation (0.86 g for 10 min at 4uC), the supernatant

absorbance at 405 nm was measured and % hemolysis was

calculated.

SmCD59.1 and SmCD59.2 transfected CHO cells
CHO cells were obtained from American Type Culture

Collection (Manassas, VA) and cultured as monolayers in

100 mm cell culture dishes using DMEM/F12 medium (Life

Technologies) supplemented with 10% fetal calf serum (FCS),

2 mM L-glutamine, 100 units/mL penicillin and 50 mg/mL

streptomycin sulfate. Cells were maintained at 37uC and 5%

CO2 and reseeded twice a week using 0.05% trypsin.

The full size SmCD59.1 and SmCD59.2 coding regions,

including the putative domains for the signal peptide and GPI

anchor, respectively, were codon optimized for human and

hamster codon preferences, synthesized (Genscript USA Inc.,

Piscataway, NJ) (Table S1) and cloned into pcDNA-3.1(+) via

BamHI/XhoI restriction sites. A full length hCD59 cDNA

obtained from Open Biosystems/Thermo Scientific, AL was

sub-cloned into pcDNA to serve as a positive control for protein

expression and complement inhibitory studies in CHO cells.

The recombinant plasmids were transiently introduced into 70–

80% confluent CHO cells cultured in 6 well-plates using the

polymer-based DNA transfection agent jetPEI (Polyplus,

France) according to manufacturer’s instructions. Transfected

cells were cultured for an additional 48 h before harvesting.

CHO cells transfected with empty vector were included as

negative control.

CHO cells transiently transfected with SmCD59.1 and

SmCD59.2 were tested for membrane protein expression. Cells

expressing hCD59, or containing empty pcDNA, were included

as positive and negative controls, respectively. For fluorescent

microscopy and flow cytometry analysis, live cells were washed

twice with PBS without CaCl2 and MgCl2 and detached from

the plate with a non-enzymatic cell dissociation solution

(Sigma). Cells were washed once with DMEM/F12 containing

0.2% BSA (DMEM-BSA) by centrifugation at 1006 g for 5 min

and resuspended to 106 cells/mL in the same medium. Cells

were incubated for 30 min at room temperature with the

respective primary antibodies, i.e. CHO-SmCD59.1 with rat

polyclonal serum anti-rSmCD59.1 at 1:500 dilution; CHO-

SmCD59.2 with an anti-rSmCD59.2 at 1:500 and CHO-

hCD59 with a rat monoclonal antibody anti-hCD59 at 1:2,000.

After 2 washes with DMEM-BSA, cells were incubated with a

secondary FITC-labeled goat anti-rat IgG (Invitrogen, Life

Technologies). Cells were immediately visualized under an

inverted fluorescent microscope and positive cells were quan-

tified by flow cytometry after subtracting fluorescent back-

ground from cells transfected with empty vector. For analysis by

Western blot, detached cells were washed twice with PBS and

membrane extract was prepared using the ProteoExtract Native

Membrane Protein Extraction Kit (EMD Millipore, Billerica,

MA), following manufacturer’s instructions. The membrane

fractions were incubated with each corresponding primary

antibody followed by HRP-labeled goat anti-rat IgG (Invitro-

gen) and developed using the ECL Western Blot Developing

System.

To confirm that SmCD59 is GPI-anchored in transfected

CHO cells, we followed previously described methodology for

hCD59 [51]. Briefly, transfected cells were removed from

culture plate wells, washed in Hank’s Balanced Salt Solution

(HBSS) and exposed to 1 Unit/mL of PiPL-C (Sigma) in HBSS

or kept in buffer only as control. After incubation for 1 h at

37uC, cells were stained with the antibody anti-rSmCD59.1 and

the percentage of fluorescent cells was quantified and compared
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with the control sample not treated with PiPL-C using flow

cytometry.

Complement resistance of CHO cells expressing
SmCD59.1 and SmCD59.2

CHO cells expressing SmCD59.1 and SmCD59.2 were tested

in a complement mediated cell damage assay to determine

whether these proteins have complement regulatory activity.

This approach was performed according to previously reported

methodologies described for hCD59 [51,52], with some

modifications. Briefly, CHO cells transiently transfected with

SmCD59.1, SmCD59.2, hCD59 and empty vector were

detached from 6-well culture plates as described in the previous

section, washed and incubated with 5% rabbit anti-CHO

membrane serum in DMEM-BSA for 30 min at room temper-

ature, washed twice with DMEM-BSA and incubated with 10%

NHS (Complement Technology, USA) in DMEM-BSA as

source of human complement factors. Following 1 h sample

incubation at 37uC, cell viability was determined by adding the

vital dye propidium iodide at 5 mg/mL and the population of

live cells (not stained by propidium iodide) were identified by

flow cytometry. Samples with NHS heated at 56uC for 30 min

to inactivate complement were used to measure background cell

mortality.

Suppression of SmCD59.1 and SmCD59.2 gene
expression by RNAi

Gene-specific siRNAs were commercially synthesized (Integrat-

ed DNA Technologies, Inc., IA) and used to induce gene

expression knockdown of SmCD59.1 and SmCD59.2, respective-

ly, by electroporation as described [53]. The DNA sequence for

SmCD59.1 siRNA is 59-CTACAAGTGACTAGTCGTAGT-

TGTG-39, spanning coding DNA positions 193–217. SmCD59.2

siRNA sequence is 59-GGTAAAGCTGGCTTAGTAACT-

GAAT-39 spanning coding DNA positions 241–265. The negative

control siRNA was acquired from IDT and has been previously

tested by our own group [53]. Briefly, freshly transformed

schistosomula were placed into electroporation buffer (Bio Rad,

CA) containing a mixture of SmCD59.1 and SmCD59.2 siRNAs

at 5.6 mM each or control siRNA (11.2 mM) or no siRNA.

Parasites were immediately electroporated and then cultured for 5

days in DMEM/F12 medium containing 10% FCS at 37uC, in an

atmosphere of 5% CO2. Reduction in target transcript levels was

measured by qRT-PCR relative to transcript levels in parasites

Figure 1. ClustalX multiple sequence alignment of the mature protein sequence (excluding the signal peptide) of TFPDs from
platyhelminthes, CD59 and Ly6. The regions with high identity and similarity between sequences are shown as black and gray columns,
according to the ClustalX algorithm. Arrows indicate highly conserved Cysteines and Asparagines with a C and an N, respectively. Dashed lines
represent pairs of cysteine residues forming disulfide bonds determined from Hs-CD59 (red) and predicted for SmCD59.2 (black). Only for SmCD59
sequences, potential sites for N-glycosylation are shown in blue with asparagine (N) in red, and potential sites for GPI anchor are shown in yellow.
Human CD59 active sites are shaded in red. The sequences abbreviation are: Schistosoma mansoni (SmCD59.1-7), Schistosoma japonicum (Sj1, Sj2.3,
Sj3, Sj4.1, Sj6), Schistosoma hematobium (Sh1-3 and Sh5-7), Clonorchis sinensis (Cs-757, Cs-8328, Cs-8627), Opisthorchis viverrini (Ov-8524, Ov-3995 and
Ov-6738), Fasciola hepatica (Fh-6273), Fasciola gigantica (Fg-25430 and Fg-15245), Schmidtea mediterranea (Smed), Equus caballus (Ec-Ly6), Pongo
abelii (Pa-Ly6 and Pa-CD59), Macaca mulatta (Mam-Ly6), Mus musculus (Mm-Ly6 and Mm-CD59), Monodelphis domestica (Md-Ly6), Ornithorhynchus
anatinus (Oa-Ly6), Homo sapiens (Hs-Ly6 and Hs-CD59), Saimiriine herpesvirus (Sah-CD59), Rattus norvegicus (Rn-CD59) (the accession numbers are
listed in the Table S2).
doi:10.1371/journal.pntd.0002482.g001
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treated with control irrelevant siRNA (100% gene expression).

Decrease in SmCD59.1 and SmCD59.2 protein levels was

measured in whole parasite lysates by Western blots. Schistosom-

ula lysates were prepared by adding 80 mL of RIPA buffer

containing a cocktail of protease inhibitors followed by incubation

on ice for 1 h. The protein content in each extract was estimated

using the BCA Protein Assay Kit (Pierce, IL) according to the

manufacturer’s instructions. Soluble protein (800 ng) was subject-

ed to SDS-PAGE, blotted onto PVDF membrane and blocked

with PBS containing 0.1% Tween 20 and 5% milk for 1 h at room

temperature. The membrane was then probed overnight at 4uC
with anti-rSmCD59.1 or anti-rSmCD59.2 immune rat serum at

1:500 dilution or rabbit antibody directed against the schistosome

protein aquaporin (SmAQP) as loading control at 1:250 dilution.

Bound primary antibodies were detected by appropriate secondary

antibodies conjugated to horseradish peroxidase and exposure to

Table 1. Molecular characteristics of Schistosoma mansoni CD59-like proteins.

Namea
S. mansoni
v5 IDb

pI/Mwc

(kDa)
Orthologd

Organism (% id) Primary structure analysise
Locationf

Expression

Signal
Peptide Domain

GPI
anchor

SmCD59.1 Smp_019350 8.11/11.0 Ly-6 Sarcophilus harrisii (34%) x uPAR/Ly6/CD59/snake toxin x Tegument1 q
Day 3 Sch2

SmCD59.2 Smp_105220 8.33/12.1 Ly-6D Macaca mulatta (33%) x uPAR/Ly6/CD59/snake toxin x** Tegument1 q
Day 3 Sch2, 3

SmCD59.3 Smp_081900.2 8.47/11.4 CD59 Myotis davidii (30%) x x** q Day 3 Sch2

SmCD59.4 Smp_166340 8.65/11.5 Ly-6 Desmodus rotundus (34%) x x** Tegument4 q
Day 3 Sch2

SmCD59.5 Smp_081920 8.66/11.6 CD59 Myotis davidii (29%) x uPAR/Ly6/CD59/snake toxin x** Tegument4 q
Day 3 Sch2

SmCD59.6 Smp_166350 9.00/11.5 CD59 Canis lupus familiaris (27%) x uPAR/Ly6/CD59/snake toxin x**

SmCD59.7 Smp_125250 8.95/11.4 Ly-6D Saimiri boliviensis (24%) x* x**

aProposed gene names (accession numbers of cloned cDNAs).
bSchisto GeneDB version 5 systematic ID.
cMolecular weight and isoelectric point.
dBLASTx analysis for identification of the closest ortholog in GeneBank; ortholog protein, organism, identity.
eSMART predicts the presence of domains in the protein sequence.
fLocation of the protein in proteomic studies and up regulated stages by microarray analysis;
(1)Castro-Borges et al., 2011;
(2)Parker-Manuel et al., 2011;
(3)Farias et al., 2010;
(4)Wilson, 2012.
*Signal peptide prediction with SignalP 4.1 server (D-scores above 0.4 but below 0.5).
**GPI Prediction Server (Version 3.0) bellows the cut-off.
doi:10.1371/journal.pntd.0002482.t001

Figure 2. Homology modeling of SmCD59.2. Ribbon display, side view (A) and top view (B). The models were generated with Modeller 5.1 using
3-D structure of human CD59 as a template (2UWR). The quality of the model was assessed with Procheck. Disulfide bridges are visualized as magenta
sticks, and the three finger-shaped backbone is visualized as projections emerging from the disulfide bridges.
doi:10.1371/journal.pntd.0002482.g002
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ECL substrate. The same membrane was probed three times to

detect SmCD59.1, SmCD59.2 and the control protein, SmAQP.

For each re-use, the membrane was stripped with Western Blot

Stripping Buffer (Thermo Scientific, IL) following manufacturer’s

instructions to remove bound antibody.

Complement killing assay of SmCD59.1 and SmCD59.2
suppressed schistosomula

SmCD59.1 and SmCD59.2 suppressed schistosomula were

tested in a complement killing assay modified from Deng et al.

[27]. Briefly, 200 control and siRNA-suppressed parasites

cultured for 5 days were washed in DMEM/F12 and incubated

for 30 min at 37uC with serum (1:4 dilution) from rats infected

twice with cercariae (IRS) or with naive rat serum (NRS), both

heat-inactivated. Parasites were washed with medium and

incubated overnight at 37uC with undiluted NHS as a source

of complement. Suppressed and control schistosomula were also

tested for complement killing in the absence of rat serum. After

18–24 h, schistosomula were exposed to 1 mg/mL of DNA

binding stain Hoechst 33258 dye for 5 min and examined with

an inverted fluorescent microscope to count the number of dead

fluorescent parasites under ultraviolet light (352 excitation/455

emission) [54]. Dye uptake only occurs if there is complement

induced-tegumental damage. Samples were run in duplicates in

three independent experiments. Percent net mortality was

calculated by subtracting background mortality of parasites

treated with heat-inactivated NHS. The same complement killing

assay protocol was used to measure mortality of freshly

transformed schistosomula cultured for 3 h in DMEM/F12 plus

10% FCS.

Results

Sequence and in silico analyses
BlastP comparisons of SmCD59.1 and SmCD59.2 sequences to

GenBank revealed low similarity with orthologs of CD59 proteins

belonging to the uPAR/Ly6/CD59/snake toxin-receptor super-

family (E-value, ranging from 3610210–461024). Because this is

the first article to deal specifically with this schistosome gene

family, herein we propose numbering of these genes as shown on

Table 1. In addition to the six previously reported S. mansoni

sequences, SmCD59.1-6, it was possible to identify a new S.

mansoni member (SmCD59.7 – Sm_125250) (Table 1), which

displays a slightly different distribution of Cys 10 (Figure 1).

Furthermore, nine sequences from S. japonicum and six from S.

hematobium could be identified, and all branched together with the

S. mansoni members representing possible orthologs (Figure S2). In

spite of the low bootstrap value, all these sequences did not branch

together with mammalian Ly6 or CD59 sequences. Additionally,

searching other databases, 13 non-characterized proteins from

other Platyhelminthes species were identified (E-value, ranging

from 9610219–261027). Noteworthy, was the identification of a

member in the turbellarian S. mediterranea (Figure S2).

Analyses of the primary sequences revealed the presence of ten

conserved cysteine residues following the same pattern of distribu-

tion in Platyhelminthes (Figure 1). A very intrinsic characteristic of

the TFPD fold is the presence of at least four conserved cystines

among all the different classes of proteins having this domain [30].

Nonetheless, this pattern differs from the CD59s of mammals in the

3rd and 4th cysteines, which are separated by a larger stretch of

amino acids in the Platyhelminthes sequences and are located at a

distance of exactly two amino acids from their closest cysteines (2nd

and 5th Cys). These distances (from the 2nd to the 3rd and from the

4th to the 5th Cys) in mammals are more variable. However, the

most important difference of these molecules when compared to

human CD59, is that they do not have the conserved amino acid

residues (D24, W40, R53 and E56 in hCD59) involved in

complement recognition [30,55], as well as the ‘‘hydrophobic

groove’’ (C39, W40 and L54 in hCD59), highly conserved in all

CD59s [55]. The sequence belonging to Herpesvirus Saimiri

Protein (Sah-CD59) was included as a homolog from human CD59.

Similarly, a glycine adjacent to the sixth cysteine (characteristic of

toxins) is not present in the sequences [33] (Figure 1).

Homology modeling
In order to explicitly visualize the putative domain features and

also provide insight into its folding, 3D-modeling of SmCD59.2

(Smp_105220) was performed using human CD59 as a template

(2UWR) (Figure 2). Despite the low similarity between the two

sequences (,37%), it was possible to align them in order to

Figure 3. Relative expression levels in different SmCD59 isoforms. Relative gene expression levels for each homologue was determined by
qRT-PCR and represented as mean (+ SD) from technical triplicates. The developmental stages examined were cercariae, schistosomula (11-day
cultured), and adult pairs (6-week old).
doi:10.1371/journal.pntd.0002482.g003
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perform the modeling. Out of the 124 residues, 73 of them were

modeled (beginning at V25, which becomes V1 in the mature

protein, and ending at A97, becoming A73). The last 27 residues

at the C-terminal remained out of the model, since they did not

show any similarity to 2UWR (Figure 1). RMSD was of 1.24 Å

between template and models in the common core (36 alpha-

carbon atoms).

In this model, the finger-shaped backbone is present within the

structure, emerging from a hydrophobic palm, clearly seen in

Figure 2A. Additionally, the four conserved cystines can be

observed (Figure 2B) and would be formed by the following pairs:

Cys3-Cys27, Cys24-Cys45, Cys49-Cys65 and Cys66-Cys71.

There are another two conserved cysteines in the Schistosoma spp.

(Cys6 and Cys9 in SmCD59.2) that may not form a disulfide

bridge. However, the possibility of a fifth cystine formed by these

two cysteines cannot be ruled out, since the model generated is not

necessarily a real portrait of the native molecule’s fold. All these

spatial conformations are possible since the TFPD signature is

present in the sequence (Figure 1). The geometry of the final

refined model was evaluated with a Ramachandran plot, which

showed that 97% of the amino acid residues were positioned in the

‘‘allowed’’ regions (data not shown).

Most of the SmCD59 genes are differentially expressed in
the transition from cercaria to schistosomulum and adult
worms

In order to establish the level of expression in different parasite

stages, including cercariae, in vitro cultured 7-day old schistosom-

ula, adult worms, eggs and miracidia, qRT-PCR was performed

using SYBR Green (Life Technologies). Gene expression fold

changes of each SmCD59 were calculated relative to the less

expressed stage after normalization to the alpha-tubulin house-

keeping gene. The results show that the SmCD59 genes, with the

exception of SmCD59.6, display increased gene expression in the

schistosomulum and adult worm stages (Figure S3).

To evaluate the relative expression levels between the different

SmCD59 isoforms, qRT-PCR was performed using the Taqman

system on three stages, the free living infective stage (cercaria), in

vitro cultured 11-day old schistosomula and adult worms.

SmCD59.1, SmCD59.3 and SmCD59.4 showed the highest levels

of expression with higher expression in the schistosomula and

adult stages, while SmCD59.2, SmCD59.5 and SmCD59.7

showed intermediate levels of expression and SmCD59.6 was

found at very low levels (Figure 3).

SmCD59 protein expression profile across the parasite
life cycle stages

Samples prepared from cercariae, schistosomula, adult male

and female worms, eggs and miracidia stages from S. mansoni, and

tegument isolated by the freeze/thaw method, were all separated

by 15% SDS-PAGE. Immunoblotting was performed using mouse

anti-rSmCD59.1 and anti-rSmCD59.2 antisera. The protein

expression profile of SmCD59.1 generally correlated with the

Real Time RT-PCR data, revealing low expression in miracidia

and cercariae, increasing in schistosomula and adult worms

(Figure 4A). A lower intensity band of higher molecular mass may

be attributed to some cross reactivity with other SmCD59

members (possibly glycosylated) (Figure 4A), as suggested by the

in silico predicted N-glycosylation sites (Figure 1). In the case of

SmCD59.2, a similar expression profile with higher levels in

schistosomula was observed (Figure 4B).

Notably, after the separation of the tegument from the worm

body, the SmCD59.1 protein was detected only in the insoluble

fraction of stripped worms (Figure 4C). We cannot rule out the

presence of this protein in the tegument fraction; however, this

data suggested that the protein is much more abundant in

denuded worms than in the tegument. The SmCD59.2 protein

was found to be more abundant in stripped worms, with similar

proportions in the soluble and insoluble fractions (Figure 4D).

Furthermore, analysis of the tegument surface membrane fraction

revealed that the small amount of protein present in the tegument

is membrane associated, with no protein detected in the soluble

supernatant (soluble syncytial proteins) (Figure 4D).

SmCD59.1 and SmCD59.2 present a ubiquitous
localization in adult worms of S. mansoni

Immunolocalization studies on whole adult worms using rat

serum raised against rSmCD59.1 and rSmCD59.2 revealed that

both proteins were expressed on the surface of S. mansoni adult

Figure 4. Immunoblotting of protein extracts from S. mansoni stages using anti-rSmCD59.1 or anti-rSmCD59.2 polyclonal
antibodies. Protein extracts (20 mg) from different S. mansoni stages: EGG (eggs), MIR (miracidia), CER (cercariae), SCH (in vitro 7-day-old
schistosomula), = (male adult worm), R (female adult worm) and P (positive control, 100 ng of rSmCD59.1) were analyzed using (A) anti-rSmCD59.1
antiserum; or (B) anti-rSmCD59.2 antiserum, P (positive control, 100 ng of rSmCD59.2 expressed in E. coli). Extracts of stripped worms (Strip) and
Tegument (Teg) of adult worms were probed with (C) anti-rSmCD59.1 or (D) anti-rSmCD59.2 antisera. Insoluble (Ins) and soluble (Sol) protein extracts
of stripped worms; (Tsm) enriched tegument surface membranes fraction; (Twm) tegument extract without surface membranes. Positions of
molecular mass standard are indicated.
doi:10.1371/journal.pntd.0002482.g004
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Figure 5. Fluorescence confocal microscopy images showing immunolocalization of SmCD59.1 and SmCD59.2 in whole mount and
in transverse sections of S. mansoni adult worms. (A and B) Confocal projections of SmCD59.1 and SmCD59.2 protein in the tegument of whole
mount adult male worms. (D and E) Fluorescence detection of SmCD59.1 and SmCD59.2 in transverse sections of S. mansoni adult worms. (C and F)
Negative control, serum from naı̈ve rat. Secondary antibody coupled to Alexa 488 (green) was used for SmCD59 localization. DAPI (blue) was used for
nucleus localization (E and F) and Rhodamine Phalloidin (red) was used for actin localization (A, B and C). Arrows – tegument tubercules; M – male; F –
female; p – parenchyma; mc – muscle cells.
doi:10.1371/journal.pntd.0002482.g005

Figure 6. Evaluation of the ability of SmCD59.1 and SmCD59.2 to modulate complement activity. Hemolytic assays were performed
after incubating normal human serum (NHS) with different amounts of SmCD59.1 (produced in P. pastoris), SmCD59.2 (produced in P. pastoris or E.
coli), or BSA (negative control). (A) Treated NHS was then incubated with rabbit erythrocytes (Alternative Pathway) or (B) antibody-sensitized sheep
erythrocytes (Classical Pathway). The percentage of hemolysis was calculated in comparison with erythrocytes suspensions completely lysed with
water (100% lysis). The volume of NHS used in these assays corresponds to the amount that promotes 50% lysis of erythrocytes. Each column
represents the mean of three independent experiments 6 SD.
doi:10.1371/journal.pntd.0002482.g006
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male worms, as shown by the green staining apparent around and

over their dorsal tubercules (Figure 5A and B). However, analysis

of adult worm sections revealed that SmCD59.1 protein is also

expressed at significant levels in the parenchyma cells of male and

female adult worms (Figure 5D), while SmCD59.2 protein shows

even a broader localization, including muscle cells of male and

female adult worms (Figure 5E).

Investigation of the inhibition of complement-mediated
hemolysis by rSmCD59.1 and rSmCD59.2 proteins

In order to investigate the involvement of SmCD59 isoforms in

the inhibition of the complement cascade, NHS was pre-incubated

with various amounts of rSmCD59.1 and rSmCD59.2 proteins,

and then added to rabbit erythrocytes (Alternative Pathway) or

antibody-sensitized sheep erythrocytes (Classical Pathway). Our

data revealed that the rSmCD59 isoforms and the negative control

BSA did not inhibit hemolysis triggered by the Alternative or

Classical Complement Pathways (Figure 6). The NHS used in

these assays promoted 50% erythrocyte lysis and addition of the

recombinant schistosome proteins or BSA did not alter this

percentage. These results therefore suggest that the rSmCD59

isoforms are not involved in the inhibition of complement

deposition by the Classical or Alternative Pathways.

Evaluation of complement resistance of CHO cells
expressing SmCD59.1 and SmCD59.2

It has been shown that the membrane form of hCD59 (GPI-

anchored) is about 5 to 10 times more active at inhibiting the

complement system as compared to the soluble form lacking the

GPI anchor [56,57]. Thus, CHO cells were transfected with the

codon optimized full-length cDNA of SmCD59.1 (CHO-

SmCD59.1) and SmCD59.2 (CHO-SmCD59.2) to measure

complement resistance of cells expressing these membrane-

anchored proteins. Cells transfected with hCD59 (CHO-hCD59)

and empty vector (CHO-pcDNA) were included as positive and

negative controls, respectively.

Expression of SmCD59.1 in the CHO cell surface was

demonstrated by positive staining of the membrane of live cells

with an anti-rSmCD59.1 antibody. Flow cytometer analyses

confirmed expression of SmCD59.1 in about 20% of the transfected

cells (Figure S4A). Similar results were obtained with hCD59

(Figure S4B). Expression of SmCD59.2 in the cell membranes was

detected by Western blot of a membrane preparation of transfected

cells (anti-rSmCD59.2 rat serum did not react with endogenous

CD59 protein in live CHO cells – data not shown). To confirm that

SmCD59.1 is GPI-anchored, transfected CHO cells were treated

with PiPL-C, labeled with anti- rSmCD59.1 antibody and analyzed

by flow cytometry. As shown in Figure S4C (top panels), there was a

pronounced reduction in antibody labeling anti-rSmCD59.1 after

treatment with PiPL-C (6.8%) as compared to untreated cells

(25.8%). Results were similar for CHO-hCD59 cells included as

positive control (bottom panels).

CHO-SmCD59.1 and CHO-SmCD59.2 were tested for

complement resistance when exposed to antibodies reactive to

CHO membrane proteins and to complement from NHS.

Background cell mortality was monitored by including samples

treated with heat-inactivated complement (iNHS). Complement-

treated cells were analyzed by flow cytometry to quantify the live

cell population, i.e. cells of reduced fluorescence that are not

stained by propidium iodide (Figure 7). The number of viable cells

in the CHO-hCD59 sample was considerably higher than the

number of live cells in the CHO-pcDNA sample after addition of

NHS (Figure 7A, first peak in left panel). T-test analysis of three

independent experiments (Figure 7D) showed that CHO-hCD59

cells were significantly more resistant to complement (73.4%69.1)

than CHO-pcDNA cells (37.8%69%) (p,0.05). When cells were

treated with iNHS, the number of live cells in both samples was

nearly identical and close to 95% (Figure 7A, first peak in right

panel and Figure 7D), confirming the complement inhibitory

Figure 7. Complement resistance of CHO cells expressing
SmCD59.1, SmCD59.2 and hCD59 (positive control). Viable cells
were quantified by flow cytometry following exposure to anti-CHO
antibodies and normal human serum (NHS) or heat-inactivated serum
(iNHS). Black histograms are CHO cells transfected with hCD59 (A),
SmCD59.1 (B) or SmCD59.2 (C), respectively. Red histograms are control
cells transfected with empty pcDNA vector (A, B and C). The first peak in
both black and red histograms represents viable cells and the second
peak represents dead cells stained by propidium iodide (PI). (D) Cell
viability of CHO cells transfected with hCD59 or pcDNA treated with
anti-CHO antibodies and NHS or iNHS in three independent exper-
iments (mean 6 SD). P values are indicated.
doi:10.1371/journal.pntd.0002482.g007

On the CD59-Like proteins in Schistosoma mansoni

PLOS Neglected Tropical Diseases | www.plosntds.org 11 October 2013 | Volume 7 | Issue 10 | e2482



activity of hCD59 in the transfected cells. The same cell survival

analysis was performed on CHO-SmCD59.1 and CHO-

SmCD59.2 samples, but there was no difference in cell viability

in both samples compared to CHO-pcDNA sample after exposure

to NHS (Figure 7B and 7C respectively). These results strongly

indicate that SmCD59.1 and SmCD59.2 are not complement

inhibitory proteins.

Effect of SmCD59.1 and SmCD59.2 gene suppression on
complement killing of schistosomula

To further assess whether SmCD59.1 and SmCD59.2 protect

schistosomes from the complement attack, freshly transformed

schistosomula were treated with a mixture of SmCD59.1 and

SmCD59.2 specific siRNAs and tested for complement susceptibil-

ity 5 days later. Transcript levels measured by qRT-PCR were

about 60% lower in SmCD59-suppressed parasites than in control

parasites (Figure 8A). Schistosomula were suppressed immediately

after cercarial transformation because SmCD59 mRNA levels are

undetectable by qRT-PCR at that early time point after which

expression increases significantly (data not shown). This approach

was expected to ensure that SmCD59 gene knockdown would

substantially inhibit protein production in siRNA-treated parasites,

while control parasites would have abundant protein levels. Indeed,

Western blot analysis in Figure 8B confirmed dramatic reduction of

SmCD59.1 (top panel) and SmCD59.2 (middle panel) proteins in

siRNA-suppressed parasites compared to lysates of control para-

sites. In the bottom panel, the SmAQP control protein was detected

in all lysates, demonstrating that comparable levels of protein were

present in each lane. The significant decrease of protein levels in

siRNA-suppressed schistosomula did not enhance in vitro parasite

killing by human complement beyond 20%, even in the presence of

immune serum when compared to the control groups in three

independent experiments (Figure 8C). Finally, data in figure 8D was

obtained to validate the complement assay and to confirm previous

results [3,4,7] in which, contrary to older schistosomula, 3 h-

cultured parasites are more susceptible to complement killing,

particularly when the killing is antibody mediated. Thus, our results

indicate that SmCD59.1 and SmCD59.2 are not complement

regulatory proteins in schistosomes.

Discussion

Early analysis of the S. mansoni sequences, SmCD59.1 and

SmCD59.2, revealed similarity to human CD59 [13,28,29]. In the

present report, we have described members of the TFPD family in

Figure 8. SmCD59.1 and SmCD59.2 gene expression knockdown and complement mediated killing assay of suppressed parasites.
(A) Relative SmCD59.1 and SmCD59.2 gene expression (mean 6 SE) in schistosomula 5 days after treatment with SmCD59 siRNAs or control siRNA
(control) or not treated parasites (none). ‘‘SmCD59.1+2’’ indicates parasites treated with a mixture of equal molar amounts of SmCD59.1 and
SmCD59.2 siRNAs. (B) Protein levels in SmCD59-suppressed and control schistosomula groups as described in (A). Western blot results are shown for
SmCD59.1 (top panel), SmCD59.2 (middle panel) and the S. mansoni aquaporin (SmAQP) as a loading control (bottom panel). (C) The parasites were
treated with immune rat serum (IRS), normal rat serum (NRS), or kept in medium only and then treated with normal human serum (NHS) as source of
complement. Percent net mortality of schistosomula is shown and was determined by background mortality subtraction of parasites treated with
heat-inactivated NHS. Results shown are mean 6 SD of duplicate samples in three independent experiments. (D) Freshly transformed schistosomula
(3 h in culture) were included as a positive control in the complement mediated killing assay.
doi:10.1371/journal.pntd.0002482.g008
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Platyhelminthes and compared their structure and folding to the

human CD59 protein [58]. This group of proteins contains the

TFPD fold, since the characteristic cysteines of this family are

present in their sequences. Despite the fact that the cysteines are

conserved, there are two important differences that are evident in

the alignment: i) the 3rd and 4th cysteines are in different positions

when aligned with their mammalian counterparts; nevertheless, all

the Platyhelminthes sequences maintain the two-amino acid

distance pattern between the 2nd/3rd and 4th/5th cysteines; ii)

the Platyhelminthes sequences lack the essential amino acids in the

active site required to block the formation of the MAC. However,

it is reasonable to expect that not all these features would be totally

conserved in trematodes and mammals, since these proteins may

have hypothetically evolved as complement inhibitors through

convergent evolution. For example, there is a fish homologue of

CD59, which was shown to have fish complement inhibitory

activity, but does not have many of the so-called ‘critical’ residues

conserved [59]. Furthermore, the presence of at least one CD59

member in the non-parasitic flatworm, S. mediterranea, suggests that

these proteins are also participating in aspects of non-parasitic

Platyhelminth biology. Moreover, it is at least intriguing how this

pattern remained conserved in inferior taxa, while in mammals it

seems to be more variable.

The transcription of most SmCD59 genes is up-regulated

following the transition from free-living cercaria to the parasitic

schistosomula stage; some of these genes continue to show

increasing transcription into the adult worm stage. These data

confirm previous microarray results showing up-regulation of

SmCD59.1-5 expression in 3-day old schistosomula in comparison

to germ-balls and cercariae [60]. Since SmCD59.1 and

SmCD59.2 are the only representatives of this family confirmed

to localize at the host-parasite interface by PiPL-C treatment, they

were chosen for additional characterization, including functional

studies. Western blot analysis of SmCD59.1 and SmCD59.2 at

different life cycle stages confirms that protein expression of these

genes also increases during the transition to the mammalian stage.

This coincides with the transition of the parasite from a

complement-sensitive state to one of resistance [5]. Confocal

microscopy immunolocalization studies using anti-rSmCD59.1

and anti-rSmCD59.2 antibodies confirmed previous data obtained

by PiPL-C shaving showing that the proteins were surface-exposed

on the tegument. On the other hand, it was clear that the proteins

were also present in considerable amounts inside the parasite,

which is in accord with the Western blot experiments on tegument

extracts and stripped worms. On the whole, these results further

support the concept that these proteins are probably involved in

aspects of non-parasitic schistosome biology.

Due to the sequence similarity, we also investigated whether

polyclonal antibodies directed to human CD59 (Abnova) could

recognize SmCD59.1 and SmCD59.2 and whether rat anti-

rSmC59.1 and anti-rSmCD59.2 polyclonal antibodies recognize

human CD59 (Abnova). However, no cross reactivity could be

observed in any of these studies (data not shown).

To demonstrate whether SmCD59.1 and SmCD59.2 are

functional homologues of human CD59, soluble rSmCD59

proteins produced in P. pastoris and E. coli were used to examine

their complement-inhibitory activity in an in vitro hemolytic assay

designed to favor the activation of the Alternative (rabbit

erythrocytes) or the Classical (antibody-sensitized sheep erythro-

cytes) Pathways, respectively. Soluble forms of CD59 lacking the

GPI-anchor domain have been expressed in mammalian cells,

insect cells and yeast and shown to have MAC-inhibitory activity

in vitro [57,61,62], indicating that glycosylation by Pichia pastoris

does not inhibit the protein function. However, in our study no

inhibition of erythrocyte lysis was observed when NHS was pre-

incubated with rSmCD59 proteins.

Membrane-targeted forms of CD59 have been shown to be

more potent in inhibiting complement than the soluble forms [54,59].

Thus, as an alternative approach, SmCD59.1 and 2 were expressed

as membrane proteins (complete coding region) in CHO cells

followed by treatment of transfected cells with human complement.

Membrane protein expression in CHO cells may also contribute to

produce rSmCD59 proteins as close to the native state as possible,

which is essential for functional studies. In addition, eukaryotic cells

transfected with complement regulatory proteins represent a more

physiologically relevant target for in vitro complement experiments as

compared to erythrocytes pre-treated with these proteins [63].

Despite our results showing proper localization of rSmCD59.1 and

rSmCD59.2 at the plasma membrane and proper GPI-anchorage of

rSmCD59.1, transfected CHO cells were not resistant to killing by

human complement. Taken together, these functional analyses

suggest that SmCD59.1 and SmCD59.2 do not possess inherent

complement inhibitory activities.

In a third attempt to investigate the potential of SmCD59.1 and 2

to protect schistosomes from complement attack, the parasites were

treated with target-specific siRNAs to induce gene expression

knockdown for both targets simultaneously. Despite successful

suppression of SmCD59.1 and 2 transcription and translation in

schistosomula, these parasites did not become more susceptible to

complement killing, by either the Alternative or the Classical

Pathways as compared to control parasites. We believe that these

results, together with the other complement assays and the sequence

and structural comparison, strongly support the conclusion that

SmCD59.1 and 2 do not have a complement regulatory function.

These schistosome CD59-like proteins probably have another

function in the parasite that is unrelated to complement evasion,

although it is quite likely that they are involved in some kind of

molecular interaction. This hypothesis is acceptable since TFPDs

commonly bind molecules, either as ligands (e.g. toxins) or

membrane-attached receptors, like CD59 or urokinase/plasmin-

ogen activator receptor, uPAR [33]. Gathering all the evidence,

we conclude that these CD59-like proteins do not have a

complement regulatory role in schistosomes. Thus, it would be

more appropriate to rename this class of proteins. However, since

several papers have been published on this gene family as

SmCD59 and the protein function is still unknown, it is reasonable

to change the family name only when their function is elucidated.

Further studies should focus on resolving the 3-D structure of the

proteins and deriving their function within the biological context

of the host/parasite relationship.

Supporting Information

Figure S1 Expression and purification of rSmCD59.1
and rSmCD59.2. (A) SDS–PAGE (15%) analysis of pooled

fractions of the recombinant proteins rSmCD59.1 and

rSmCD59.2 after purification through Ni+2-charged column

chromatography. Lane 1- rSmCD59.2 expressed in E. coli; lane

2 – rSmCD59.2 expressed in Pichia pastoris; lane 3 – rSmCD59.1

expressed in Pichia pastoris. (B) SDS-PAGE of rSmCD59.1 and

rSmCD59.2 stained with Schiff’s reagent to reveal the presence of

glycans, (C) the same gel was stained with Coomassie to show the

corresponding proteins. Positions of molecular mass standards

(kDa) are indicated, 20 mg of each protein was loaded in each lane,

rSmVAL4 was used as a positive glycosylated protein and BSA

was used as a negative control (non-glycosylated protein).

(PDF)
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Figure S2 Phylogenetic analysis performed with protein
sequences showing the relation between SmCD59 and
orthologs from other Platyhelminthes species. The

sequences abbreviation are: Schistosoma mansoni (SmCD59.1-7),

Schistosoma japonicum (Sj1, Sj2.1, Sj2.2, Sj2.3, Sj3, Sj4.1, Sj4.2, Sj4.3

and Sj6), Schistosoma hematobium (Sh1-3 and Sh5-7), Clonorchis sinensis

(Cs-757, Cs-8328, Cs-8627 and Cs-110927), Opisthorchis viverrini

(Ov-8524, Ov-3995, Ov-6738 and Ov-31372), Fasciola hepatica (Fh-

6273), Fasciola gigantica (Fg-25430, Fg-15245 and Fg-20490),

Schmidtea mediterranea (Smed), Equus caballus (Ec-Ly6), Pongo abelii

(Pa-Ly6 and Pa-CD59), Macaca mulatta (Mam-Ly6), Mus musculus

(Mm-Ly6 and Mm-CD59a), Monodelphis domestica (Md-Ly6),

Ornithorhynchus anatinus (Oa-Ly6), Homo sapiens (Hs-Ly6 and Hs-

CD59), Rattus norvegicus (Rn-CD59) (the accession numbers are

listed in the supplementary Table S2).

(TIF)

Figure S3 Analysis of gene expression of SmCD59.1,
SmCD59.2, SmCD59.3, SmCD59.4, SmCD59.5 and
SmCD59.6 genes in the egg, miracidia, cercariae,
schistosomula and adult stages. Total RNA from the

different life-stages were transcribed to cDNA and analyzed by

real-time RT-PCR to quantify the differences in expression levels

of the genes between stages. The alfa-tubulin house-keeping

control gene was used as normalizer and data were calculated

according to the relative 22DDCt method and shown as relative

mRNA expression in relation to the stage with less expression. The

data are the means (+) maximum expression variation of triplicates

from the same biological sample. ND – gene expression not

detected.

(PDF)

Figure S4 Flow cytometer and fluorescent microscopy
analysis of transiently transfected CHO cells for surface
expression of SmCD59.1. (A) Live cells were stained with a rat

polyclonal serum anti-rSmCD59.1 followed by FITC-conjugated

goat anti-rat IgG. SmCD59.1 transfected cells (red histogram in

left panel) were 18.5% positive (middle panel) after subtraction of

background fluorescence of cells transfected with empty vector

(black histogram in left panel). Fluorescent microscopy of

SmCD59.1 transfected cells (2006) shows typical membrane

fluorescence pattern (right panel). (B) Similar to (A), but using

CHO cells expressing hCD59 labeled with a rat MAb anti-hCD59

as positive control. Cells were 28.8% positive after background

subtraction from cells transfected with empty vector. (C) To

confirm GPI-anchor expression of SmCD59.1 in the cell surface,

CHO cells were treated (+) or not (2) with PiPL-C and stained

with anti-SmCD59.1 antibody. Percentage of fluorescent cells was

determined for both samples (top panels) after background

subtraction of cells transfected with empty vector. In bottom

panels, CHO cells transfected with hCD59 were tested as positive

control.

(PDF)

Table S1 Set of primers/probes used to detect gene
expression of SmCD59.1-7 by Real Time RT-PCR and
synthetic genes used in this study. aRedesigned sequence

using DNA2.0 codon optimization algorithms for expression in

Pichia pastoris. bRedesigned sequence using codon optimization

algorithms for expression in mammalian cells.

(PDF)

Table S2 List of organisms, abbreviations for gene
names and accession numbers used in this study.
Databases:*http://schistodb.net/schisto/, **http://bioinfosecond.

vet.unimelb.edu.au/ and ***http://smedgd.neuro.utah.edu/blast.

php

(PDF)
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