117 research outputs found

    The effect of initial local anesthetic dose with continuous interscalene analgesia on postoperative pain and diaphragmatic function in patients undergoing arthroscopic shoulder surgery: a double-blind, randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interscalene block (ISB) is commonly performed using 20-40 mL of local anesthetic. Spread to adjacent structures and consequent adverse effects including paralysis of the ipsilateral hemidiaphragm are frequent. Pain ratings, analgesic requirements, adverse events, satisfaction, function and diaphragmatic excursion were compared following interscalene block (ISB) with reduced initial bolus volumes.</p> <p>Methods</p> <p>Subjects undergoing arthroscopic rotator cuff repair were randomized to receive 5, 10, or 20 mL ropivacaine 0.75% for ISB in a double-blind fashion (N = 36). Continuous infusion with ropivacaine 0.2% was maintained for 48 h. Pain and diaphragmatic excursion were assessed before block and in the recovery unit.</p> <p>Results</p> <p>Pain ratings in the recovery room were generally less than 4 (0-10 NRS) for all treatment groups, but a statistically significant difference was noted between the 5 and 20 mL groups (NRS: 2.67 vs. 0.62 respectively; p = 0.04). Pain ratings and supplemental analgesic use were similar among the groups at 24 h, 48 h and 12 weeks. There were no differences in the quality of block for surgical anesthesia. Dyspnea was significantly greater in the 20 mL group (p = 0.041). Subjects with dyspnea had significant diaphragmatic impairment more frequently (Relative risk: 2.5; 95%CI: 1.3-4.8; p = 0.042). Increased contralateral diaphragmatic motion was measured in 29 of the 36 subjects. Physical shoulder function at 12 weeks improved over baseline in all groups (baseline mean SST: 6.3, SEM: 0.6; 95%CI: 5.1-7.5; 12 week mean SST: 8.2, SEM: 0.46; 95%CI: 7.3-9.2; p = 0.0035).</p> <p>Conclusions</p> <p>ISB provided reliable surgical analgesia with 5 mL, 10 mL or 20 mL ropivacaine (0.75%). The 20 mL volume was associated with increased complaints of dyspnea. The 5 mL volume was associated with statistically higher pain scores in the immediate postoperative period. Lower volumes resulted in a reduced incidence of dyspnea compared to 20 mL, however diaphragmatic impairment was not eliminated. Compensatory increases in contralateral diaphragmatic movement may explain tolerance for ipsilateral paresis.</p> <p>Trial Registration</p> <p>clinicaltrials.gov. identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00672100">NCT00672100</a></p

    Textbook Outcome Nationwide Analysis of a Novel Quality Measure in Pancreatic Surgery:Nationwide Analysis of a Novel Quality Measure in Pancreatic Surgery

    Get PDF
    Background: Textbook outcome (TO) is a multidimensional measure for quality assurance, reflecting the ‘‘ideal’’ surgical outcome. Methods: Post-hoc analysis of patients who underwent pancreatoduodenectomy (PD) or distal pancreatectomy (DP) for all indications between 2014 and 2017, queried from the nationwide prospective Dutch Pancreatic Cancer Audit. An international survey was conducted among 24 experts from 10 countries to reach consensus on the requirements for TO in pancreatic surgery. Univariable and multivariable logistic regression was performed to identify TO predictors. Between-hospital variation in TO rates was compared using observed-versus-expected rates. Results: Based on the survey (92% response rate), TO was defined by the absence of postoperative pancreatic fistula, bile leak, postpancreatectomy hemorrhage (all ISGPS grade B/C), severe complications (Clavien–Dindo III), readmission, and in-hospital mortality. Overall, 3341 patients were included (2633 (79%) PD and 708 (21%) DP) of whom 60.3% achieved TO; 58.3% for PD and 67.4% for DP. On multivariable analysis, ASA class 3 predicted a worse TO rate after PD (ASA 3 OR 0.59 [0.44–0.80]), whereas a dilated pancreatic duct (>3 mm) and pancreatic ductal ade

    Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering

    Get PDF
    A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture

    APC/C-Mediated Degradation of dsRNA-Binding Protein 4 (DRB4) Involved in RNA Silencing

    Get PDF
    Background: Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome) is a master ubiquitin protein ligase (E3) that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized. Methodology/Principal Findings: In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA). This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2) of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed

    Insights into APC/C: from cellular function to diseases and therapeutics

    Get PDF
    Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics

    Energy generation : the Solly starter system

    No full text

    A small Ustilago maydis effector acts as a novel adhesin for hyphal aggregation in plant tumors

    No full text
    The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are characteristic large tumors in which dark pigmented spores are formed. Here, we functionally characterized a novel core effector lep1 (late effector protein 1) which is highly expressed during tumor formation and contributes to virulence. We characterize lep1 mutants, localize the protein, determine phenotypic consequences upon deletion as well as constitutive expression, and analyze relationships with the repellent protein Rep1 and hydrophobins. In tumors, lep1 mutants show attenuated hyphal aggregation, fail to undergo massive late proliferation and produce only a few spores. Upon constitutive expression, cell aggregation is induced and the surface of filamentous colonies displays enhanced hydrophobicity. Lep1 is bound to the cell wall of biotrophic hyphae and associates with Rep1 when constitutively expressed in hyphae. We conclude that Lep1 acts as a novel kind of cell adhesin which functions together with other surface-active proteins to allow proliferation of diploid hyphae as well as for induction of the morphological changes associated with spore formation
    • …
    corecore