138 research outputs found

    Magnetic field - temperature phase diagram of quasi-two-dimensional organic superconductor lambda-(BETS)_2 GaCl_4 studied via thermal conductivity

    Full text link
    The thermal conductivity kappa of the quasi-two-dimensional (Q2D) organic superconductor lambda-(BETS)_2 GaCl_4 was studied in the magnetic field H applied parallel to the Q2D plane. The phase diagram determined from this bulk measurement shows notable dependence on the sample quality. In dirty samples the upper critical field H_{c2} is consistent with the Pauli paramagnetic limiting, and a sharp change is observed in kappa(H) at H_{c2 parallel}. In contrast in clean samples H_{c2}(T) shows no saturation towards low temperatures and the feature in kappa(H) is replaced by two slope changes reminiscent of second-order transitions. The peculiarity was observed below ~ 0.33T_c and disappeared on field inclination to the plane when the orbital suppression of superconductivity became dominant. This behavior is consistent with the formation of a superconducting state with spatially modulated order parameter in clean samples.Comment: 10 pages, 8 figures, new figure (Fig.5) and references added, title change

    Monte-Carlo dosimetry on a realistic cell monolayer geometry exposed to alpha particles

    Get PDF
    The energy and specific energy absorbed in the main cell compartments (nucleus and cytoplasm) in typical radiobiology experiments are usually estimated by calculations as they are not accessible for a direct measurement. In most of the work, the cell geometry is modelled using the combination of simple mathematical volumes. We propose a method based on high resolution confocal imaging and ion beam analysis (IBA) in order to import realistic cell nuclei geometries in Monte-Carlo simulations and thus take into account the variety of different geometries encountered in a typical cell population. Seventy-six cell nuclei have been imaged using confocal microscopy and their chemical composition has been measured using IBA. A cellular phantom was created from these data using the ImageJ image analysis software and imported in the Geant4 Monte-Carlo simulation toolkit. Total energy and specific energy distributions in the 76 cell nuclei have been calculated for two types of irradiation protocols: a 3 MeV alpha particle microbeam used for targeted irradiation and a 239Pu alpha source used for large angle random irradiation. Qualitative images of the energy deposited along the particle tracks have been produced and show good agreement with images of DNA double strand break signalling proteins obtained experimentally. The methodology presented in this paper provides microdosimetric quantities calculated from realistic cellular volumes. It is based on open-source oriented software that is publicly available

    Resting-State Network Alterations Differ between Alzheimer's Disease Atrophy Subtypes

    Get PDF
    Several Alzheimer's disease (AD) atrophy subtypes were identified, but their brain network properties are unclear. We analyzed data from two independent datasets, including 166 participants (103 AD/63 controls) from the DZNE-longitudinal cognitive impairment and dementia study and 151 participants (121 AD/30 controls) from the AD neuroimaging initiative cohorts, aiming to identify differences between AD atrophy subtypes in resting-state functional magnetic resonance imaging intra-network connectivity (INC) and global and nodal network properties. Using a data-driven clustering approach, we identified four AD atrophy subtypes with differences in functional connectivity, accompanied by clinical and biomarker alterations, including a medio-temporal-predominant (S-MT), a limbic-predominant (S-L), a diffuse (S-D), and a mild-atrophy (S-MA) subtype. S-MT and S-D showed INC reduction in the default mode, dorsal attention, visual and limbic network, and a pronounced reduction of "global efficiency" and decrease of the "clustering coefficient" in parietal and temporal lobes. Despite severe atrophy in limbic areas, the S-L exhibited only marginal global network but substantial nodal network failure. S-MA, in contrast, showed limited impairment in clinical and cognitive scores but pronounced global network failure. Our results contribute toward a better understanding of heterogeneity in AD with the detection of distinct differences in functional connectivity networks accompanied by CSF biomarker and cognitive differences in AD subtypes

    A comparison of the radiosensitisation ability of 22 different element metal oxide nanoparticles using clinical megavoltage X-rays

    Get PDF
    Background: A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions. Results: Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage. Conclusions: Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success

    Association of latent factors of neuroinflammation with Alzheimer's disease pathology and longitudinal cognitive decline

    Get PDF
    INTRODUCTION: We investigated the association of inflammatory mechanisms with markers of Alzheimer's disease (AD) pathology and rates of cognitive decline in the AD spectrum. METHODS: We studied 296 cases from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study (DELCODE) cohort, and an extension cohort of 276 cases of the Alzheimer's Disease Neuroimaging Initiative study. Using Bayesian confirmatory factor analysis, we constructed latent factors for synaptic integrity, microglia, cerebrovascular endothelial function, cytokine/chemokine, and complement components of the inflammatory response using a set of inflammatory markers in cerebrospinal fluid. RESULTS: We found strong evidence for an association of synaptic integrity, microglia response, and cerebrovascular endothelial function with a latent factor of AD pathology and with rates of cognitive decline. We found evidence against an association of complement and cytokine/chemokine factors with AD pathology and rates of cognitive decline. DISCUSSION: Latent factors provided access to directly unobservable components of the neuroinflammatory response and their association with AD pathology and cognitive decline

    Different inflammatory signatures based on CSF biomarkers relate to preserved or diminished brain structure and cognition

    Get PDF
    Neuroinflammation is a hallmark of Alzheimer’s disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, Aβ42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295); a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM; n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological Aβ when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity

    Midlife occupational cognitive requirements protect cognitive function in old age by increasing cognitive reserve

    Get PDF
    INTRODUCTION: Several lifestyle factors promote protection against Alzheimer's disease (AD) throughout a person's lifespan. Although such protective effects have been described for occupational cognitive requirements (OCR) in midlife, it is currently unknown whether they are conveyed by brain maintenance (BM), brain reserve (BR), or cognitive reserve (CR) or a combination of them. METHODS: We systematically derived hypotheses for these resilience concepts and tested them in the population-based AgeCoDe cohort and memory clinic-based AD high-risk DELCODE study. The OCR score (OCRS) was measured using job activities based on the O*NET occupational classification system. Four sets of analyses were conducted: (1) the interaction of OCR and APOE-e4 with regard to cognitive decline (N = 2,369, AgeCoDe), (2) association with differentially shaped retrospective trajectories before the onset of dementia of the Alzheimer's type (DAT; N = 474, AgeCoDe), (3) cross-sectional interaction of the OCR and cerebrospinal fluid (CSF) AD biomarkers and brain structural measures regarding memory function (N = 873, DELCODE), and (4) cross-sectional and longitudinal association of OCR with CSF AD biomarkers and brain structural measures (N = 873, DELCODE). RESULTS: Regarding (1), higher OCRS was associated with a reduced association of APOE-e4 with cognitive decline (mean follow-up = 6.03 years), consistent with CR and BR. Regarding (2), high OCRS was associated with a later onset but subsequently stronger cognitive decline in individuals converting to DAT, consistent with CR. Regarding (3), higher OCRS was associated with a weaker association of the CSF Aß42/40 ratio and hippocampal volume with memory function, consistent with CR. Regarding (4), OCR was not associated with the levels or changes in CSF AD biomarkers (mean follow-up = 2.61 years). We found a cross-sectional, age-independent association of OCRS with some MRI markers, but no association with 1-year-change. OCR was not associated with the intracranial volume. These results are not completely consistent with those of BR or BM. DISCUSSION: Our results support the link between OCR and CR. Promoting and seeking complex and stimulating work conditions in midlife could therefore contribute to increased resistance to pathologies in old age and might complement prevention measures aimed at reducing pathology
    • …
    corecore