359 research outputs found

    Durability and damage tolerance of Large Composite Primary Aircraft Structure (LCPAS)

    Get PDF
    Analysis and testing addressing the key technology areas of durability and damage tolerance were completed for wing surface panels. The wing of a fuel-efficient, 200-passenger commercial transport airplane for 1990 delivery was sized using graphite-epoxy materials. Coupons of various layups used in the wing sizing were tested in tension, compression, and spectrum fatigue with typical fastener penetrations. The compression strength after barely visible impact damage was determined from coupon and structural element tests. One current material system and one toughened system were evaluated by coupon testing. The results of the coupon and element tests were used to design three distinctly different compression panels meeting the strength, stiffness, and damage-tolerance requirements of the upper wing panels. These three concepts were tested with various amounts of damage ranging from barely visible impact to through-penetration. The results of this program provide the key technology data required to assess the durability and damage-tolerance capability or advanced composites for use in commercial aircraft wing panel structure

    The quarter that changed the world

    Get PDF

    Assessing efficiency of software production for NASA-SEL data

    Get PDF
    This paper uses production models to identify and quantify efficient allocation of resources and key drivers of software productivity for project data in the NASA-SEL database. While analysis allows identification of efficient projects, many of the metrics that could have provided a more detailed analysis are not at a level of measurement to allow production model analysis. Production models must be used with proper parameterization to be successful. This may mean a new look at which metrics are helpful for efficiency assessment

    The effects of LPS plus pro-inflammatory cytokines on glycogen synthesis in C2C12 myocytes

    Get PDF
    Culturing C2C12 myoblasts and myotubes with a combination of LPS, TNF-α, IFN-γ and IL1β for 18 hours was used to determine the effects of endotoxic shock on possible causes of the dysregulation of glucose homeostasis associated with the syndrome. The in vitro model was confirmed by the significant production of NO in both myoblasts and myotubes following treatment. The treatment resulted in significantly different results between both myocyte preparations with regards to the regulation of glycogen synthesis. In the myoblasts, the treatment significantly increased myoblast glycogen synthesis, in a NO-independent manner, as seen by the inclusion of the NO synthase inhibitor L-NAME. This stimulation was unlikely to be due to a change in either GS or Phosphorylase activity. However it may have been caused by a significant increase in glucose transport induced by the treatment. This latter increase was also NO-independent, as well as not requiring reactive oxygen species. Insulin-induced myoblast protein synthesis was impaired by the treatment, which is likely due to an impairment of insulin-stimulated ERK1/2 phosphorylation. In the myotubes the case was different, as the treatment significantly reduced glycogen synthesis in a NO-dependent manner. This correlated with a NO-dependent increase in GS phosphorylation, indicating it was less active, however measurements of GS fractional activity failed to confirm this. Insulin stimulation of myotube glycogen synthesis was impaired by the treatment in a NO-independent manner, which may have involved an impairment of the insulin signal to ERK1/2. However the latter impairment was NO-dependent, suggesting other contributory mechanisms. Endotoxic treatment significantly increased myoblast protein content, but failed to do so in myotubes. This effect in the myoblasts may be explained by a significant increase in protein synthesis between 6 and 12 hours of treatment. None of the effects observed in the study were due to the treatment compromising cell viability

    Generating GBX2 antibodies: A useful tool in determining developmental mechanisms regulated by GBX2 [abstract]

    Get PDF
    Abstract only availableThe GBX class of homeobox genes is comprised of Gbx1 and Gbx2. Both loss-of-function and gain-of-function studies in mice have shown that Gbx2 is vital for normal anterior hindbrain development of mammalian organisms. To gain more insight into the developmental mechanisms regulated by GBX2, we are generating GBX2 antibodies. To accomplish this, we have subcloned Gbx2 into the pRSET A protein expression vector and transformed the construct into BL21(DE3)pLysS cells. Protein expression was induced by IPTG. The expressed protein was analyzed by SDS-PAGE as well as Western analysis. The purified protein will be used to elicit an immune response in chickens to generate the antibodies against GBX2. Preliminary results from the SDS-PAGE and Western analysis have suggested that the GBX2 protein is being expressed. However, further testing is necessary for confirmation. Currently, we are using Western analysis to specifically target the 6x His tagged GBX2 fusion protein in order to identify the protein for further analysis by mass spectroscopy. Generation of GBX2 antibodies will provide an important tool to enhance our knowledge of how GBX2 functions in development. Having these antibodies will allow for cellular localization. In addition, the antibodies will be used in chromatin immunoprecipitation assays, which will allow for the production of a library that contains genes directly regulated by GBX2. The identification of target genes will provide a way to enable the collection of valuable data that will be useful for more long-term research goals involving the specific signaling and genetic pathways in which this transcription factor is involved

    Automatic adjustment of pressure support by acomputer-driven knowledge-based system during noninvasive ventilation: afeasibility study

    Get PDF
    Objective: To evaluate the feasibility of using aknowledge-based system designed to automatically titrate pressure support (PS) to maintain the patient in a"respiratory comfort zone” during noninvasive ventilation (NIV) in patients with acute respiratory failure. Design and setting: Prospective crossover interventional study in an intensive care unit of auniversity hospital. Patients: Twenty patients. Interventions: After initial NIV setting and startup in conventional PS by the chest physiotherapist NIV was continued for 45 min with the automated PS activated. Measurements and results: During automated PS minute-volume was maintained constant while respiratory rate decreased significantly from its pre-NIV value (20 ± 3 vs. 25 ± 3 bpm). There was atrend towards aprogressive lowering of dyspnea. In hypercapnic patients PaCO2 decreased significantly from 61 ± 9 to 51 ± 2 mmHg, and pH increased significantly from 7.31 ± 0.05 to 7.35 ± 0.03. Automated PS was well tolerated. Two system malfunctions occurred prompting physiotherapist intervention. Conclusions: The results of this feasibility study suggest that the system can be used during NIV in patients with acute respiratory failure. Further studies should now determine whether it can improve patient-ventilator interaction and reduce caregiver workloa

    Pristionchus pacificus genomics: from genetics to genome sequence

    Get PDF
    Satellite systems are proving to be important players in understanding the differences between ontogenies during evolution. The satellite system P. pacificus, since its discovery nearly a decade ago (Sommer et al., 1996), has provided developmental biologists with new insights into various developmental processes (Eizinger and Sommer, 1997; Jungblut and Sommer, 1998; Sigrist and Sommer, 1999; Zheng et al., 2005). Further understanding of these developmental processes necessitated a genomic framework. Generation of an integrated genetic linkage map and a physical map for mapping of mutants has set a good foundation for such molecular studies (Srinivasan et al., 2003; Srinivasan et al., 2002). With the impending genome sequence being generated by the Washington Genome sequencing center (WUGSC) funded by NHGRI, P. pacificus is bound to cross the ‘next frontier’ in our understanding of evolution of developmental and behavioral processes. This review highlights the current status of P. pacificus genomics

    Pristionchus.org: a genome-centric database of the nematode satellite species Pristionchus pacificus

    Get PDF
    Comparative studies have been of invaluable importance to the understanding of evolutionary biology. The evolution of developmental programs can be studied in nematodes at a single cell resolution given their fixed cell lineage. We have established Pristionchus pacificus as a major satellite organism for evolutionary developmental biology relative to Caenorhabditis elegans, the model nematode. Online genomic information to support studies in this satellite system can be accessed at . Our web resource offers diverse content covering genome browsing, genetic and physical maps, similarity searches, a community platform and assembly details. Content will be continuously improved as we annotate the P.pacificus genome, and will be an indispensable resource for P.pacificus genomics
    corecore