13 research outputs found

    A generalized definition of dosimetric quantities

    Get PDF
    The current definitions of microdosimetric and dosimetric quantities use the notion of 'ionizing radiation'. However, this notion is not rigorously defined, and its definition would require the somewhat arbitrary choice of specified energy cut-off values for different types of particles. Instead of choosing fixed cut-off values one can extend the system of definitions by admitting the free selection of a category of types and energies of particles that are taken to be part of the field. In this way one extends the system of dosimetric quantities. Kerma and absorbed dose appear then as special cases of a more general dosimetric quantity, and an analogue to kerma can be obtained for charged particle fields; it is termed cema. A modification that is suitable for electron fields is termed reduced cema

    Shell-model calculations of neutrino scattering from 12C

    Get PDF
    Neutrino reaction cross-sections, (νμ,μ)(\nu_\mu,\mu^-), (νe,e)(\nu_e,e^-), μ\mu-capture and photoabsorption rates on 12^{12}C are computed within a large-basis shell-model framework, which included excitations up to 4ω4\hbar\omega. When ground-state correlations are included with an open pp-shell the predictions of the calculations are in reasonable agreement with most of the experimental results for these reactions. Woods-Saxon radial wave functions are used, with their asymptotic forms matched to the experimental separation energies for bound states, and matched to a binding energy of 0.01 MeV for unbound states. For comparison purposes, some results are given for harmonic oscillator radial functions. Closest agreement between theory and experiment is achieved with unrestricted shell-model configurations and Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive cross sections: σˉ=13.8×1040\bar{\sigma} = 13.8 \times 10^{-40} cm2^2 for the (νμ,μ)(\nu_{\mu},\mu^{-}) decay-in-flight flux in agreement with the LSND datum of (12.4±1.8)×1040(12.4 \pm 1.8) \times 10^{-40} cm2^2; and σˉ=12.5×1042\bar{\sigma} = 12.5 \times 10^{-42} cm2^2 for the (νe,e)(\nu_{e},e^{-}) decay-at-rest flux, less than the experimental result of (14.4±1.2)×1042(14.4 \pm 1.2) \times 10^{-42} cm2^2.Comment: 19 pages. ReVTeX. No figure

    HIT THEORY FOR LOW-LET RADIATION.

    No full text

    Dose-rate and fractionation effects of ionization radiation

    No full text

    PHYSICAL CHARACTERISTICS OF PARTICLE BEAMS.

    No full text

    Worldwide outdoor round robin study of organic photovoltaic devices and modules

    No full text
    Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using "suitcase sample" approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner

    Runoff, Stream Flow, Reservoir Yield, and Water Quality

    No full text
    corecore