246 research outputs found

    Gamma-ray diagnostics of Type Ia supernovae: Predictions of observables from three-dimensional modeling

    Full text link
    Besides the fact that the gamma-ray emission due to radioactive decays is responsible for powering the light curves of Type Ia supernovae (SNe Ia), gamma rays themselves are of particular interest as a diagnostic tool because they provide a direct way to obtain deeper insights into the nucleosynthesis and the kinematics of these explosion events. Focusing on two of the most broadly discussed SN Ia progenitor scenarios - a delayed detonation in a Chandrasekhar-mass white dwarf (WD) and a violent merger of two WDs - we use three-dimensional explosion models and perform radiative transfer simulations to obtain synthetic gamma-ray spectra. Both chosen models produce the same mass of 56Ni and have similar optical properties that are in reasonable agreement with the recently observed supernova SN 2011fe. In contrast to the optical regime, the gamma-ray emission of our two chosen models proves to be rather different. The almost direct connection of the emission of gamma rays to fundamental physical processes occuring in SNe Ia permits additional constraints concerning several explosion model properties that are not easily accessible within other wavelength ranges. Proposed future MeV missions such as GRIPS will resolve all spectral details only for nearby SNe Ia, but hardness ratio and light curve measurements still allow for a distinction of the two different models at 10 and 16 Mpc for an exposure time of 10^6 s, respectively. The possibility to detect the strongest line features up to the Virgo distance will offer the opportunity to build up a first sample of SN Ia detections in the gamma-ray energy range and underlines the importance of future space observatories for MeV gamma rays.Comment: 10 pages, 8 figures, accepted for publication by A&

    Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha

    Full text link
    Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 Msun of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching MCh to be on the order of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA

    Going from 3D to 1D: A one-dimensional approach to common-envelope evolution

    Full text link
    The common-envelope (CE) phase is a crucial stage in binary star evolution because the orbital separation can shrink drastically while ejecting the envelope of a giant star. Three-dimensional (3D) hydrodynamic simulations of CE evolution are indispensable to learning about the mechanisms that play a role during the CE phase. While these simulations offer great insight, they are computationally expensive. We propose a one-dimensional (1D) model to simulate the CE phase within the stellar evolution code MESA\texttt{MESA} by using a parametric drag force prescription for dynamical drag and adding the released orbital energy as heat into the envelope. We compute CE events of a 0.97 M⊙0.97\,\mathrm{M}_\odot asymptotic giant-branch star and a point mass companion with mass ratios of 0.25, 0.50, and 0.75, and compare them to 3D simulations of the same setup. The 1D CE model contains two free parameters, which we demonstrate are both needed to fit the spiral-in behavior and the fraction of ejected envelope mass of the 1D method to the 3D simulations. For mass ratios of 0.25 and 0.50, we find good-fitting 1D simulations, while for a mass ratio of 0.75, we do not find a satisfactory fit to the 3D simulation as some of the assumptions in the 1D method are no longer valid. In all our simulations, we find that the released recombination energy is important to accelerate the envelope and drive the ejection.Comment: Accepted for publication in A&A, 16 pages, 9 figure

    Faint calcium-rich transient from the double-detonation of a 0.6 M⊙0.6\,M_\odot carbon-oxygen white dwarf star

    Full text link
    We have computed a three-dimensional hydrodynamic simulation of the merger between a massive (0.4 M⊙0.4\,M_\odot) helium white dwarf (He WD) and a low-mass (0.6 M⊙0.6\,M_\odot) carbon-oxygen white dwarf (CO WD). Despite the low mass of the primary, the merger triggers a thermonuclear explosion as a result of a double detonation, producing a faint transient and leaving no remnant behind. This type of event could also take place during common-envelope mergers whenever the companion is a CO WD and the core of the giant star has a sufficiently large He mass. The spectra show strong Ca lines throughout the first few weeks after the explosion. The explosion only yields <0.01 M⊙<0.01\,M_\odot of 56^{56}Ni, resulting in a low-luminosity SN Ia-like lightcurve that resembles the Ca-rich transients within this broad class of objects, with a peak magnitude of Mbol≈−15.7 M_\mathrm{bol} \approx -15.7\,mag and a rather slow decline rate of Δm15bol≈1.5 \Delta m_{15}^\mathrm{bol}\approx 1.5\,mag. Both, its lightcurve-shape and spectral appearance, resemble the appearance of Ca-rich transients, suggesting such mergers as a possible progenitor scenario for this class of events.Comment: Submitted to A&A letters, posted on ArXiv after positive referee report. 7 pages, 4 figure

    Scalable stellar evolution forecasting: Deep learning emulation vs. hierarchical nearest neighbor interpolation

    Full text link
    Many astrophysical applications require efficient yet reliable forecasts of stellar evolution tracks. One example is population synthesis, which generates forward predictions of models for comparison with observations. The majority of state-of-the-art population synthesis methods are based on analytic fitting formulae to stellar evolution tracks that are computationally cheap to sample statistically over a continuous parameter range. Running detailed stellar evolution codes, such as MESA, over wide and densely sampled parameter grids is prohibitively expensive computationally, while stellar-age based linear interpolation in-between sparsely sampled grid points leads to intolerably large systematic prediction errors. In this work, we provide two solutions of automated interpolation methods that find satisfactory trade-off points between cost-efficiency and accuracy. We construct a timescale-adapted evolutionary coordinate and use it in a two-step interpolation scheme that traces the evolution of stars from zero age main sequence all the way to the end of core helium burning while covering a mass range from 0.65{0.65} to 300 M⊙300 \, \mathrm{M_\odot}. The feedforward neural network regression model (first solution) that we train to predict stellar surface variables can make millions of predictions, sufficiently accurate over the entire parameter space, within tens of seconds on a 4-core CPU. The hierarchical nearest neighbor interpolation algorithm (second solution) that we hard-code to the same end achieves even higher predictive accuracy, the same algorithm remains applicable to all stellar variables evolved over time, but it is two orders of magnitude slower. Our methodological framework is demonstrated to work on the MIST data set. Finally, we discuss prospective applications and provide guidelines how to generalize our methods to higher dimensional parameter spaces.Comment: Submitted to A&

    Type Ia supernovae from exploding oxygen-neon white dwarfs

    Get PDF
    The progenitor problem of Type Ia supernovae (SNe Ia) is still unsolved. Most of these events are thought to be explosions of carbon-oxygen (CO) white dwarfs (WDs), but for many of the explosion scenarios, particularly those involving the externally triggered detonation of a sub-Chandrasekhar mass WD (sub-M Ch WD), there is also a possibility of having an oxygen-neon (ONe) WD as progenitor. We simulate detonations of ONe WDs and calculate synthetic observables from these models. The results are compared with detonations in CO WDs of similar mass and observational data of SNe Ia. We perform hydrodynamic explosion simulations of detonations in initially hydrostatic ONe WDs for a range of masses below the Chandrasekhar mass (M Ch), followed by detailed nucleosynthetic postprocessing with a 384-isotope nuclear reaction network. The results are used to calculate synthetic spectra and light curves, which are then compared with observations of SNe Ia. We also perform binary evolution calculations to determine the number of SNe Ia involving ONe WDs relative to the number of other promising progenitor channels. The ejecta structures of our simulated detonations in sub-M Ch ONe WDs are similar to those from CO WDs. There are, however, small systematic deviations in the mass fractions and the ejecta velocities. These lead to spectral features that are systematically less blueshifted. Nevertheless, the synthetic observables of our ONe WD explosions are similar to those obtained from CO models. Our binary evolution calculations show that a significant fraction (3-10%) of potential progenitor systems should contain an ONe WD. The comparison of our ONe models with our CO models of comparable mass (1.2 Msun) shows that the less blueshifted spectral features fit the observations better, although they are too bright for normal SNe Ia.Comment: 6 pages, 5 figure

    The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?

    Get PDF
    iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multi-dimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 solar masses, respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circum-stellar medium and surface radioactivity from a He ignited merger that may be able to account for the early UV emission in violent merger models.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    A quantitative evaluation of the extent of fluralaner uptake by ticks (Ixodes ricinus, Ixodes scapularis) in fluralaner (Bravecto TM ) treated vs. untreated dogs using the parameters tick weight and coxal index

    Get PDF
    Background Fluralaner is a new antiparasitic drug that was recently introduced as Bravecto TM chewable tablets for the treatment of tick and flea infestations in dogs. Most marketed tick products exert their effect via topical application and contact exposure to the parasite. In contrast, Bravecto TM delivers its acaricidal activity through systemic exposure. Tick exposure to fluralaner occurs after attachment to orally treated dogs, which induces a tick-killing effect within 12 h. The fast onset of killing lasts over the entire treatment interval (12 weeks) and suggests that only marginal uptake by ticks is required to induce efficacy. Three laboratory studies were conducted to quantify the extent of uptake by comparison of ticks’ weight and coxal index obtained from Bravecto TM -treated and negative-control dogs. Methods Three studies were conducted using experimental tick infestation with either Ixodes ricinus or Ixodes scapularis after oral administration of fluralaner to dogs. All studies included a treated (Bravecto TM chewable tablets, MSD Animal Health) and a negative control group. Each study had a similar design for assessing vitality and weighing of ticks collected from dogs of both groups. Additionally, in one study the coxal index (I. ricinus) was calculated as a ratio of tick’s ventral coxal gap and dorsal width of scutum. Tick weight data and coxal indices from Bravecto TM -treated and negative-control groups were compared via statistical analysis. Results Ticks collected from Bravecto TM -treated dogs weighed significantly less (p ≤ 0.0108) than ticks collected from negative-control dogs, and their coxal index was also significantly lower (p < 0.0001). The difference in tick weights was demonstrated irrespective of the tick species investigated (I. ricinus, I. scapularis). At some assessments the mean tick weights of Bravecto TM -treated dogs were significantly lower than those of unfed pre-infestation (baseline) ticks. The demonstrated tick-killing efficacy was in the range of 94.6 – 100 %. Conclusions Tick weights and coxal indices confirm that a minimal uptake results in a sufficient exposure of ticks to fluralaner (Bravecto TM ) and consequently in a potent acaricidal effect

    Thermonuclear explosions of rapidly differentially rotating white dwarfs: Candidates for superluminous Type Ia supernovae?

    Full text link
    The observed sub-class of "superluminous" Type Ia supernovae lacks a convincing theoretical explanation. If the emission of such objects were powered exclusively by radioactive decay of 56Ni formed in the explosion, a progenitor mass close to or even above the Chandrasekhar limit for a non-rotating white dwarf star would be required. Masses significantly exceeding this limit can be supported by differential rotation. We, therefore, explore explosions and predict observables for various scenarios resulting from differentially rotating carbon-oxygen white dwarfs close to their respective limit of stability. Specifically, we have investigated a prompt detonation model, detonations following an initial deflagration phase ("delayed detonation" models), and a pure deflagration model. In postprocessing steps, we performed nucleosynthesis and three-dimensional radiative transfer calculations, that allow us, for the first time, to consistently derive synthetic observables from our models. We find that all explosion scenarios involving detonations produce very bright events. The observables predicted for them, however, are inconsistent with any known subclass of Type Ia supernovae. Pure deflagrations resemble 2002cx-like supernovae and may contribute to this class. We discuss implications of our findings for the explosion mechanism and for the existence of differentially rotating white dwarfs as supernova progenitors.Comment: 12 pages, 9 figures, 2 tables, accepted for publication in A&A. Model data are available from the Heidelberg Supernova Model Archive (HESMA) at https://hesma.h-its.org

    Long-term evolution of a magnetic massive merger product

    Full text link
    About 10% of stars more massive than ≈ 1.5 M⊙{\approx}\,1.5\,\mathrm{M}_\odot have strong, large-scale surface magnetic fields and are being discussed as progenitors of highly-magnetic white dwarfs and magnetars. The origin of these fields remains uncertain. Recent 3D magnetohydrodynamical simulations have shown that strong magnetic fields can be generated in the merger of two massive stars. Here, we follow the long-term evolution of such a 3D merger product in a 1D stellar evolution code. During a thermal relaxation phase after the coalescence, the merger product reaches critical surface rotation, sheds mass and then spins down primarily because of internal mass readjustments. The spin of the merger product after thermal relaxation is mainly set by the co-evolution of the star-torus structure left after coalescence. This evolution is still uncertain, so we also consider magnetic braking and other angular-momentum-gain and -loss mechanisms that may influence the final spin of the merged star. Because of core compression and mixing of carbon and nitrogen in the merger, enhanced nuclear burning drives a transient convective core that greatly contributes to the rejuvenation of the star. Once the merger product relaxed back to the main sequence, it continues its evolution similar to that of a genuine single star of comparable mass. It is a slow rotator that matches the magnetic blue straggler τ\tau Sco. Our results show that merging is a promising mechanism to explain some magnetic massive stars and it may also be key to understand the origin of the strong magnetic fields of highly-magnetic white dwarfs and magnetars.Comment: 17 pages (incl. appendix), 14 figures, 2 tables; accepted for publication in MNRA
    • …
    corecore