52 research outputs found

    Evaluation and Diagnostic Potential of Serum Ghrelin in Feline Hypersomatotropism and Diabetes Mellitus

    Get PDF
    BACKGROUND: Ghrelin is a growth hormone secretagogue. It is a potent regulator of energy homeostasis. Ghrelin concentration is down‐regulated in humans with hypersomatotropism (HS) and increases after successful treatment. Additionally, ghrelin secretion seems impaired in human diabetes mellitus (DM). HYPOTHESIS: Serum ghrelin concentration is down‐regulated in cats with HS‐induced DM (HSDM) compared to healthy control cats or cats with DM unrelated to HS and increases after radiotherapy. ANIMALS: Cats with DM (n = 20) and with HSDM (n = 32), 13 of which underwent radiotherapy (RT‐group); age‐matched controls (n = 20). METHODS: Retrospective cross‐sectional study. Analytical performance of a serum total ghrelin ELISA was assessed and validated for use in cats. Differences in serum ghrelin, fructosamine, IGF‐1 and insulin were evaluated. RESULTS: Ghrelin was significantly higher (P < .001) in control cats (mean ± SD: 12.9 ± 6.8 ng/mL) compared to HSDM‐ (7.9 ± 3.3 ng/mL) and DM‐cats (6.7 ± 2.3 ng/mL), although not different between the HSDM‐ and DM‐cats. After RT ghrelin increased significantly (P = .003) in HSDM‐cats undergoing RT (from 6.6 ± 1.9 ng/mL to 9.0 ± 2.2 ng/mL) and the after RT ghrelin concentrations of HSDM cats were no longer significantly different from the serum ghrelin concentration of control cats. Serum IGF‐1 did not significantly change in HSDM‐cats after RT, despite significant decreases in fructosamine and insulin dose. CONCLUSION AND CLINICAL IMPORTANCE: Ghrelin appears suppressed in cats with DM and HSDM, although increases after RT in HSDM, suggesting possible presence of a direct or indirect negative feedback system between growth hormone and ghrelin. Serum ghrelin might therefore represent a marker of treatment effect

    Adverse anthropometric risk profile in biochemically controlled acromegalic patients: comparison with an age- and gender-matched primary care population

    Get PDF
    GH and IGF-1 play an important role in the regulation of metabolism and body composition. In patients with uncontrolled acromegaly, cardiovascular morbidity and mortality are increased but are supposed to be normalised after biochemical control is achieved. We aimed at comparing body composition and the cardiovascular risk profile in patients with controlled acromegaly and controls. A cross-sectional study. We evaluated anthropometric parameters (height, weight, body mass index (BMI), waist and hip circumference, waist to height ratio) and, additionally, cardiovascular risk biomarkers (fasting plasma glucose, HbA1c, triglycerides, total cholesterol, HDL, LDL, and lipoprotein (a), in 81 acromegalic patients (58% cured) compared to 320 age- and gender-matched controls (ratio 1:4), sampled from the primary care patient cohort DETECT. The whole group of 81 acromegalic patients presented with significantly higher anthropometric parameters, such as weight, BMI, waist and hip circumference, but with more favourable cardiovascular risk biomarkers, such as fasting plasma glucose, total cholesterol, triglycerides and HDL levels, in comparison to their respective controls. Biochemically controlled acromegalic patients again showed significantly higher measurements of obesity, mainly visceral adiposity, than age- and gender-matched control patients (BMI 29.5 ± 5.9 vs. 27.3 ± 5.8 kg/m2; P = 0.020; waist circumference 100.9 ± 16.8 vs. 94.8 ± 15.5 cm; P = 0.031; hip circumference 110.7 ± 9.9 vs. 105.0 ± 11.7 cm; P = 0.001). No differences in the classical cardiovascular biomarkers were detected except for fasting plasma glucose and triglycerides. This effect could not be attributed to a higher prevalence of type 2 diabetes mellitus in the acromegalic patient group, since stratified analyses between the subgroup of patients with acromegaly and controls, both with type 2 diabetes mellitus, revealed that there were no significant differences in the anthropometric measurements. Biochemically cured acromegalic patients pertain an adverse anthropometric risk profile, mainly because of elevated adiposity measurements, such as BMI, waist and hip circumference, compared to an age- and gender-matched primary care population

    Macroscopic brain architecture changes and white matter pathology in acromegaly: a clinicoradiological study

    Get PDF
    Although long-term exposure of the brain to increased GH/IGF-1 likely influences cerebral functions, no in vivo studies have been directed towards changes of the brain structure in acromegaly. Here, we used high resolution magnetic resonance images to compare volumes of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) of forty-four patients with acromegaly to an age and gender matched, healthy control group (n = 44). In addition, white matter lesions (WMLs) were quantified and graded. Patients exhibited larger GM (+3.7% compared with controls, P = 0.018) and WM volumes (+5.1%, P = 0.035) at the expense of CSF. Differences of WML counts between patients and controls were subtle, however, showing more patients in the 21–40 lesions category (P = 0.044). In conclusion, this MRI study provides first evidence that acromegalic patients exhibit disturbances of the macroscopic brain tissue architecture. Furthermore, acromegalic patients may have an increased risk of neurovascular pathology, likely due to secondary metabolic and vascular comorbidities

    Growth Horm. IGF Res.

    No full text
    • 

    corecore