112 research outputs found

    Prolongation structures for supersymmetric equations

    Get PDF
    The well known prolongation technique of Wahlquist and Estabrook (1975) for nonlinear evolution equations is generalized for supersymmetric equations and applied to the supersymmetric extension of the KdV equation of Manin-Radul. Using the theory of Kac-Moody Lie superalgebras, the explicit form of the resulting Lie superalgebra is determined. It is shown to be isomorphic to RMR*Cov+(C(2), sigma ), where RMR is an eight-dimensional radical. An auto-Backlund transformation is derived from the prolongation structure and the relationship with known solution methods of the SKdV equation is analysed. In addition it is indicated how a super-position principle for the SKdV equation can be obtaine

    Prolongation structure of the Landau-Lifshitz equation

    Get PDF
    The prolongation method of Wahlquist and Estabrook is applied to the Landau–Lifshitz equation. The resulting prolongation algebra is shown to be isomorphic to a subalgebra of the tensor product of the Lie algebra so(3) with the elliptic curve v α 2−v β 2=j β−j α (α,β=1,2,3), which is essentially a subalgebra of the Lie algebra applied by Date et al. in a different context. Taking a matrix representation of so(3) gives rise to a Lax pair of the Landau–Lifshitz equation in agreement with the results found by Sklyanin. A system of related equations is deduced which can be used for the computation of auto‐Bäcklund transformations of the Landau–Lifshitz equation

    Impact of the factor V Leiden mutation on the outcome of pneumococcal pneumonia: a controlled laboratory study

    Get PDF
    Introduction: Streptococcus (S.) pneumoniae is the most common cause of community-acquired pneumonia. The factor V Leiden (FVL) mutation results in resistance of activated FV to inactivation by activated protein C and thereby in a prothrombotic phenotype. Human heterozygous FVL carriers have been reported to be relatively protected against sepsis-related mortality. We here determined the effect of the FVL mutation on coagulation, inflammation, bacterial outgrowth and outcome in murine pneumococcal pneumonia. Methods: Wild-type mice and mice heterozygous or homozygous for the FVL mutation were infected intranasally with 2*10(6) colony forming units of viable S. pneumoniae. Mice were euthanized after 24 or 48 hours or observed in a survival study. In separate experiments mice were treated with ceftriaxone intraperitoneally 24 hours after infection and euthanized after 48 hours or observed in a survival study. Results: The FVL mutation had no consistent effect on activation of coagulation in either the presence or absence of ceftriaxone therapy, as reflected by comparable lung and plasma levels of thrombin-antithrombin complexes and fibrin degradation products. Moreover, the FVL mutation had no effect on lung histopathology, neutrophil influx, cytokine and chemokine levels or bacterial outgrowth. Remarkably, homozygous FVL mice were strongly protected against death due to pneumococcal pneumonia when treated with ceftriaxone, which was associated with more pronounced FXIII depletion; this protective effect was not observed in the absence of antibiotic therapy. Conclusions: Homozygosity for the FVL mutation protects against lethality due to pneumococcal pneumonia in mice treated with antibiotic

    Activated protein C ameliorates coagulopathy but does not influence outcome in lethal H1N1 influenza: a controlled laboratory study

    Get PDF
    Introduction: Influenza accounts for 5 to 10% of community-acquired pneumonias and is a major cause of mortality. Sterile and bacterial lung injuries are associated with procoagulant and inflammatory derangements in the lungs. Activated protein C (APC) is an anticoagulant with anti-inflammatory properties that exert beneficial effects in models of lung injury. We determined the impact of lethal influenza A (H1N1) infection on systemic and pulmonary coagulation and inflammation, and the effect of recombinant mouse (rm-) APC hereon. Methods: Male C57BL/6 mice were intranasally infected with a lethal dose of a mouse adapted influenza A (H1N1) strain. Treatment with rm-APC (125 mu g intraperitoneally every eight hours for a maximum of three days) or vehicle was initiated 24 hours after infection. Mice were euthanized 48 or 96 hours after infection, or observed for up to nine days. Results: Lethal H1N1 influenza resulted in systemic and pulmonary activation of coagulation, as reflected by elevated plasma and lung levels of thrombin-antithrombin complexes and fibrin degradation products. These procoagulant changes were accompanied by inhibition of the fibrinolytic response due to enhanced release of plasminogen activator inhibitor type-1. Rm-APC strongly inhibited coagulation activation in both plasma and lungs, and partially reversed the inhibition of fibrinolysis. Rm-APC temporarily reduced pulmonary viral loads, but did not impact on lung inflammation or survival. Conclusions: Lethal influenza induces procoagulant and antifibrinolytic changes in the lung which can be partially prevented by rm-APC treatmen

    Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Get PDF
    Preventing tissue-factor-(TF-) mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI). We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/−) mice and their wild-type (TF+/+) littermates were sedated (controls) or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators

    Lycoris -- a large-area, high resolution beam telescope

    Full text link
    A high-resolution beam telescope is one of the most important and demanding infrastructure components at any test beam facility. Its main purpose is to provide reference particle tracks from the incoming test beam particles to the test beam users, which allows measurement of the performance of the device-under-test (DUT). \LYCORIS, a six-plane compact beam telescope with an active area of \sim10×\times\SI{10}{\square\centi\metre} (extensible to 10×\times\SI{20}{\square\centi\metre}) was installed at the \DIITBF in 2019, to provide a precise momentum measurement in a \SI{1}{\tesla} solenoid magnet or to provide tracking over a large area. The overall design of \LYCORIS will be described as well as the performance of the chosen silicon sensor. The \SI{25}{\micro\metre} pitch micro-strip sensor used for \LYCORIS was originally designed for the \SID detector concept for the International Linear Collider. It adopts a second metallization layer to route signals from strips to the bump-bonded \KPIX ASIC and uses a wire-bonded flex cable for the connection to the DAQ and the power supply system. This arrangement eliminates the need for a dedicated hybrid PCB. Its performance was tested for the first time in this project. The system has been evaluated at the \DIITBF in several test-beam campaigns and has demonstrated an average single-point resolution of \SI{7.07}{\micro\meter}.Comment: 43 pages, 37 figure

    The Dynamics of CO 2 ‐Driven Granular Flows in Gullies on Mars

    Get PDF
    Martian gullies are landforms consisting of an erosional alcove, a channel, and a depositional apron. A significant proportion of Martian gullies at the mid‐latitudes is active today. The seasonal sublimation of CO2 ice has been suggested as a driver behind present‐day gully activity. However, due to a lack of in situ observations, the actual processes causing the observed changes remain unresolved. Here, we present results from flume experiments in environmental chambers in which we created CO2‐driven granular flows under Martian atmospheric conditions. Our experiments show that under Martian atmospheric pressure, large amounts of granular material can be fluidized by the sublimation of small quantities of CO2 ice in the granular mixture (only 0.5% of the volume fraction of the flow) under slope angles as low as 10°. Dimensionless scaling of the CO2‐driven granular flows shows that they are dynamically similar to terrestrial two‐phase granular flows, that is, debris flows and pyroclastic flows. The similarity in flow dynamics explains the similarity in deposit morphology with levees and lobes, supporting the hypothesis that CO2‐driven granular flows on Mars are not merely modifying older landforms, but they are actively forming them. This has far‐reaching implications for the processes thought to have formed these gullies over time. For other planetary bodies in our solar system, our experimental results suggest that the existence of gully like landforms is not necessarily evidence for flowing liquids but that they could also be formed or modified by sublimation‐driven flow processes

    Liver Manipulation Causes Hepatocyte Injury and Precedes Systemic Inflammation in Patients Undergoing Liver Resection

    Get PDF
    Contains fulltext : 51690.pdf (publisher's version ) (Closed access)BACKGROUND: Liver failure following liver surgery is caused by an insufficient functioning remnant cell mass. This can be due to insufficient liver volume and can be aggravated by additional cell death during or after surgery. The aim of this study was to elucidate the causes of hepatocellular injury in patients undergoing liver resection. METHODS: Markers of hepatocyte injury (AST, GSTalpha, and L-FABP) and inflammation (IL-6) were measured in plasma of patients undergoing liver resection with and without intermittent inflow occlusion. To study the separate involvement of the intestines and the liver in systemic L-FABP release, arteriovenous concentration differences for L-FABP were measured. RESULTS: During liver manipulation, liver injury markers increased significantly. Arterial plasma levels and transhepatic and transintestinal concentration gradients of L-FABP indicated that this increase was exclusively due to hepatic and not due to intestinal release. Intermittent hepatic inflow occlusion, anesthesia, and liver transection did not further enhance arterial L-FABP and GSTalpha levels. Hepatocyte injury was followed by an inflammatory response. CONCLUSIONS: This study shows that liver manipulation is a leading cause of hepatocyte injury during liver surgery. A potential causal relation between liver manipulation and systemic inflammation remains to be established; but since the inflammatory response is apparently initiated early during major abdominal surgery, interventions aimed at reducing postoperative inflammation and related complications should be started early during surgery or beforehand
    corecore