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Abstract. The well known prolongation technique of Wahlquist and Estabrook for 
nonlinear evolution equations is generalized for supersymmetric equations and ap- 
plied to the supersymmetric extension of the K d V  equation of Manin-Hadul. Using 
the theory of Kac-Moody Lie superalgebra, the explicit form of the resulting Lie 
superalgebra is determined. It is shown to be isomorphic to RMR x Covs(C(2) ,u) ,  
where RMR is an eight dimensional radical. An auto-Backlund transformation is 
derived from the prolongation structure and the relationship with known solution 
methods of the S K d V  equation is analysed. In addition it is indicated how a super- 
position principle for the S K d V  equation can be obtained. 

1. Introduction 

In their famous article [l] Wahlquist and Estabrook developed prolongation theory for 
nonlinear evolution equations and applied it to the Korteweg-de Vries (KdV) equation. 
This  resulted in a Lie algebra structure, which has been determined explicitly by both 
Estabrook [2] and van Eck [3]. Article [4] is an example of how the theory of Kac- 
Moody algebras can be used fruitfully to obtain a realization of a prolongation algebra. 
Wahlquist and Estabrook showed the relationship between the existence of non-trivial 
prolongation structures and known solution methods for nonlinear evolution equa- 
tions such as associated inverse scattering problems and Backlund transformations, 
indicating the relevance of the method. 

In this article we will generalize prolongation theory to the case of supersymmetric 
evolution equations and apply it to the SKdV equation of Manin-Radul (MR). Succes- 
sively we realize the resulting Lie superalgebra using the theory of Kac-Moody Lie su- 
peralgebras, derive an auto-Backlund transformation from the prolongation structure 
and indicate how to obtain a superposition principle for the SKdV equation. More- 
over, we analyse the relationship between the super prolongation method and known 
solution methods for the SKdV equation such as the super-Miura transformation and 
the super-Gardner transformation. 

The  paper is organized as follows. In section 2 we give a short summary of graded 
differential geometry in order to fix notation and to facilitate working with graded vec- 
tor fields and differential forms and derive a generalization of the prolongation method 
of Wahlquist and Estabrook for supersymmetric evolution equations. In section 3 we 
apply this method to the SKdV equation and realize the resulting Lie superalgebra. 
Finally in section 4 we derive an auto-Backlund transformation and the superposi- 
tion principle for the SKdV equation from the prolongation structure and analyse the 
relationship with known solution methods of the SKdV equation. 
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2. Prolongation method for supersymmetric systems 

In this section we give a generalization of Wahlquist and Estabrook's prolongation 
method. Before that we first give a short summary of graded differential geometry [l]. 

2.1. Graded differential geometry 

In order to fix notation and to facilitate working with graded vector fields and graded 
differential forms in the subsequent sections of the paper, we give a short summary 
of the local picture of a graded manifold X of dimension (m,  n)  in this section. For a 
more detailed description we refer the reader to Kostant [5 ] .  

In the following we denote by M, the set of multi-indices I = ( i l , .  . . , i,) which 
satisfy 1 5 i, < s . .  < i, 5 m and by N ,  the set of multi-indices v = (v,, . . . vn)  with 
vi E N and vi = 1. Furthermore, for each Z,-graded vector space A we denote by Ai 
the subspace of homogeneous elements of degree i E Z,. We define A(n) as the exterior 
algebra on n generators sl, . . . , s,. With this definition A(n) becomes a commutative 
superalgebra. As a set of local odd coordinates of X we take the generators of A(n), 
the even coordinates can be taken as in the case of an ordinary smooth manifold of 
dimension m. 

Smooth functions on this graded manifold can locally be seen as elements of the 
commutative superalgebra A(U) C m ( U ) @ ~ A ( n ) l  where U is an open subset in Rm 
and Cm(U) is the commutative algebra of smooth real-valued funct,ions on U .  Each 
element f in A(U) can be represented as 

with f,, E C m ( U )  and s,, = s P , s p 2  " ' s p k .  It is obvious that the elements 
C k m o d 2 = i  

Graded vector fields and graded differential forms can locally be described in terms 
of specific objects concerning the commutative superalgebra A(U). Graded vector 
fields are elements of the space Der A(U) of graded derivations on A(U). One can show 
that DerA(U) is a free left A(U) module with basis {aX,,aaj 1 1 6 i 5 m, 1 _< j 5 n } ,  
i.e. each 6 E DerA(U) can be written as 

f,, 8 s,, span the homogeneous space of degree i E E,. 

m n 

The derivations as, E (DerA(U)),, and E (DerA(U))l are defined by 

n n 

where aaJ(1  8 s,) = 6 j , k .  It is obvious that 0 E (Der A(U)), if and only if f i  E A(U), 
and gj E A(U)k+l in the representation above. DerA(U) is a Lie superalgebra with 
commutator 

[e,,  e,] = 0,  o 8, - ( - l )* j02  0 8,  (e, E (Der A(U)),, 0, E (Der A ( U ) ) j ) .  
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For later reference we give this commutator for the case m = n = 1 explicitly. For 
f o  E N U ) , ,  go  E A(U),,  f 1  E A(U),+, and g1 E A ( U ) , + ,  we have 

Graded differential k-forms are defined as elements of the space Rk(,4 ,U)  of all 
E (DerA(U)), and k-A(U)-linear maps p on DerA(U)  which for all 1 5 i < k, 

Qitl E (Der A(U)), satisfy 

(e ,  , . . . , e, , e,+, , . . . , e, I P )  = -(-I) k l  (0, , . . . , , ej , . . . , 0, I P ) .  

As in the ordinary case we can introduce a multiplication A of graded differential 
forms. This turns R(A,  U )  ekEn Rk(A,  U) into a bigraded commutative algebra. 
Thus ,  for each p E (Ok(A,  U ) ) i ,  y E (O’(A, U ) ) j  we have 

If we define d x j  E (R’(A, U ) ) o  and ds, E (R1(A, U)) ,  in the usual way, one can prove 
tha t  {dxIAds”  1 I E h f k , v E N I , k + l = p } i s a b a s i s o f R P ( A , U ) a s a f r e e r i g h t A ( U )  
module. where 

dxI = dXil A . . . A dxjk 

ds” = ds;’ A . . ’ A dsKn with d $ ’  = ds j  A . . . A ds j  - 
p times 

i.e. each ,8 E Rp(A, U) can be written as 

Finally we remark that there is a unique operator d : R ( A , U )  + R ( A , U )  of degree 
( 1 , O )  tha t  satisfies d2 = 0 and 

This operator is the exterior differential operator for graded differential forms. On 
RP(A, U)  it acts as 
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2.2. Generalization of t he  prolongation method 

In this subsection we give a generalization for systems of supersymmetric evolution 
equations of the prolongation method described for ordinary evolution equations by 
Wahlquist and Estabrook [I]. For this purpose we first give a short summary of the 
prolongation method for an ordinary evolution equation 

Ut  = f(u'"') (4) 

where f(u(̂ )) is a function of U and derivatives of U up to order n .  Working on 
the ( n  - 1)th order jet bundle, where we denote the ith order derivative of U by ui 
(in practical problems we also use the notation u,u,,u,,, . . .), we can represent this 
differential equation by the set of differential 2-forms 

and one additional form an representing the differential equation. By this we mean 
that the pullback of these forms to a solution manifold of equation (4) vanishes iden- 
tically, and reversely, any ( 2 ,  t)-dependent solution U to the set of equations 

satisfies equation (4).  From Cartan's theory of differential forms [6] we have an inte- 
grability condition on the set of equations (5), namely, if I = I ( a l ,  . . . , a,) is the ideal 
generated by the ai in the exterior algebra with basis {dx, dt, du, du, ,  . . . , dun-'}, we 
must have that d l  c 1. 

The prolongation method consists of adding an additional I-form 

to the set a ' , . . .  ,a,, and requiring dw to be element of the extended ideal 
I ( @ , ,  . . . ,a,, w).  One can easily see that this can be reformulated as follows: add 
to the original set of forms a Lie algebra valued form 

w = dy + F(u("-')) dz  + G(u("-')) dt 

and require w to satisfy the condition dw + [G, F ]  dx A dt E I ( & ' , .  . . , CY,,). This 
condition leads to an overdetermined system of partial differential equations for F 
and G, which gives rise to  a Lie algebra structure to  be determined. 

In general a set of supersymmetric evolution equations will be of the form 

where U is an even and 9 is an odd function. Working on an appropriate (graded) jet 
bundle we can represent this set of equations by the tKe set of even differential 2-forms 

a i = d t A d u i - , + d x r \ d t u i  f o r i =  1, . . . ,  n - 1  



Prolongation structures for supersymmetric  equations 5121 

and an additional even form a; representing equation ( 6 ) ,  together with the set of 
odd differential 2-forms 

Pi = dt Adpi-' + d x  A d t p j  for j = 1 , .  . . , m  - 1 

and an additional odd form Pm representing equation (7 ) .  At this place we assume 
the analogue of Cartan's integrability condition for ordinary differential forms to hold 
also for graded differential forms, namely d I  c I where I = I ( a l ,  . . . , a,,, Dl , . . . , P,) 
is the ideal generated by the ai and Pj in the (graded) exterior algebra with basls 

Since in this case we are dealing with even as well as odd differential forms, our 
generalization of the prolongation method of Wahlquist and Estabrook consists of 
adding both an even differential 1-form 

{dxjdtjdui * , d u , - , , d ~ ,  9 .  * , d ~ m - l } .  

WO = dyo + dx Fo(u("- ') ,  cp('"-'), yol y') + dt G0(u("-'),p("-'), yol  y') 

and an odd differential 1-form 

w' = dy' + dx F'(~("-~),(p(~-'),y~,y') + dt G1(dn- ') ,  P - l ) ,  Y o 1  Y') 

where yo and y' are a new even and odd variable, respectively, Fo and Go are even 
and F' and G' odd functions, and requiring both dwo and dw' to be element of the 
extended ideal I (a l l . .  . ,a,,P1, . .  . ,/3,,w0,w1). 

Using formulae (2) and (3) we find for dwk (k = 0 , l )  

n-1 m-1 

dwk = - C ( d c  A dui F:, + dt A dui Gk,) - C ( d x  A dpj  F:, + dt A dpj  G",) 
i = O  j =O 

- dx A (dy' F:o + dy' F i l )  - dt A (dy' Gyko + dy' Gykl). 

Using the definition of W O  and w' to eliminate dyo and dy' we can rewrite this as 

dw k = . . * - dx A (WO Fy"" + w' Pil) - dt A ( W O  Gyko + w1 GiI) 

+ dx A dt (G°F:o + G'F:, - FoG,ko - F'G$). 

If we define two even vector fields 

F = F o  avo + F' ay, G = GO ayo + GI ayl (8) 

we see from formula (1) that the coefficient of dx A dt in the last expression for dwk is 
the coefficient of ayk in [G, F ]  for k = 0,1,  respectively. Hence W O  and w1 can be seen 
as the components of an even vector field valued form 

w = d j i + d x F + d t G .  

As in the ordinary case we can now reformulate the prolongation method as follows: 
add to the original set of forms an even Lie superalgebra valued form 

w = dji + dx F(u("- ' ) ,  cp(m-l)) + dt G ( u ( ~ - ' ) ,  p(m-l))  

and require that w satisfy the condition dw+dxAdt [G, F ]  E I ( a l ,  . , . , a,,, PI , . .  . , P,). 
From the above it is clear that both F and G must be even elements of this Lie 
superalgebra. 
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3. Application to the SKdV equation 

In this section we apply the method developed in section 2 to the SKdV equation of 
Manin-Radul 

U t  = -U,,, + 6 ~ ~ 1 ,  - 3pp,, 

'Pt = -'Pzrr + 3 U V ,  + 3u,(P. 

(9) 

t 10) 
In the  first subsection we derive the necessary equations and the resulting Lie super- 
algebra, in the second subsection we realize this Lie superalgebra using the theory of 
Kac-Moody Lie superalgebra.  

3.1. Prolongation of the SKdV equation 

Using the methods described in subsection 2.2 we may represent the SKdV equation 
by the set of differential 2-forms 

cy1 = d t A d u + d x A d t u ,  

cy2 = dt A du, + dx A dt U,, 

C U ~  = dt A du,, + dx A dt ( ~ u u ,  - 3pp,, 

,B1 = dt A d p  + dx A dt p, 

p2 = dt A dp, + dx A dt (p,, 

,B3 = dt A dp,, + dx A dt (3up, + 3u,p) 

- dx A du 

- dx A d p .  

If I = I ( c ~ ~ , a ~ , c r ~ , , B ~ , ~ ~ , ~ ~ )  is the ideal in the exterior algebra with basis 
{dx, dt .  d u ,  du,, du,,, d p ,  dp,, dp,,}, one can easily verify tha t  the condition d I  C I 
is satisfied. To prolong the ideal I we add the even Lie superalgebra valued prolonga- 
tion form 

w = do + dx F ( U ,  U,, U,,, io, 'Pr, c p , , )  + dt G(u ,  U,, U,,, P1 cpz, c p , , )  

where F and G are two even elements of the Lie superalgebra, and require tha t  w 
satisfy the condition dw+dtAdt [G, F] E I .  This condition leads to  the overdetermined 
system of partial differential equations 

F, + Gus= = 0 
F,+ + G,+,, = 0 

Fu, = Fuzz  = 0 
FVs = FV,, = 0 

( ~ u u ,  - 3~cp,,)F, + ( 3 ~ ,  + 3u,;~)F, - u,G, - u,,G,, - P,G, - (P,,G,+,, + [F, GI 

We solved this system using a REDUCE package for computations in Lie superalge- 
bras [ 7 ] .  If we define x, with i < 0 to  be odd generators of the Lie superalgebra and 
2, with i > 0 even generators, we find for F and G 

= 0. 

F = U ~ X - ~  + pxW1 + x1 + ux2 + u2x3 (11) 
G = $[ -2 .u ;~x-~  - ~ P X - ,  - 2(--21p, + U ~ ' P ) X - ~  + 2pzx-3 

- 2 ( - - 3 v  + (Pzr)x-l - 2(-4u29 + w,, - u,p, + u,,p)x-2 

+ 2x4 - 2u,x5 - 2UX6 - u2x, + 2pp,x,] 

- 2(-3u2 + U,, + 3p(p,)X2 - 2(-4u3 + ~ u u , ,  + ~u(P(P, - u ~ ) x ,  

(12) 
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3.2. Realizatton of the prolongation algebra 

In this section we, as already mentioned, determine the structure of the prolongation 
algebra of the SKdV equation and give a realization of i t ,  using the theory of Kac- 
Moody Lie superalgebras. Henceforth we denote this prolongation algebra, i.e. the 
Lie superalgebra generated by the even generators tl , . . . , zg and the odd generators 

. . .,z-6 and subjected to relations (13) and (14), by MR. An important tool for 
determining the explicit structure is a grading. The following proposition is immediate. 

Proposition 1. MR admits a Z grading 

~~ 

Degree -1 3 -3 1 -5 - 1  

Generator z I  x, z3 z4 t5 t6 t7 xg 

Degree 2 -2 -6 6 0 2 -2 -2 

such that relations (13) and (14) are homogeneous 

Note that this Z grading is consistent with the Z, grading of MR. 

In [4] we showed how the Kac-Moody algebra A\') and its realization can be used 
to  find a realization of the prolongation algebra of the ordinary KdV equation. In 
this case the Kac-Moody Lie superalgebra d 2 ) ( 2 )  plays a similar role. We have the 
following proposition. 

Proposition 2 (Kac [8]> proposition 1.2). 
generators H,, H,, odd generators E,, E,, F , ,  F ,  and defining relations ( i ,  j = 1,2) 

( a )  d 2 ) ( 2 )  is the Liesuperalgebra with even 

[Hi ,  H j ]  = 0 

(ad Ei)lWa:J E .  1 = 0 

[E i ,  F j ]  = b i j  Hi 

(ad Fi)l-ail Fj = 0 
[ H i ,  Ej] = a i j  Ej  [Hi ,  Fj] = -ai, Fj 

(i # 3 )  
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where aii = 2 and aij = -2 ( i  # j). 
( b )  If C(2) N A( 1,O)  N osp(2,2) is the (classical) eight-dimensional Lie superalge- 

bra with Dynkin diagram 8-8, U the automorphism of C(2) of order 2 corresponding 
t o  interchanging the two vertices in the Dynkin diagram, with corresponding Z,- 
gradation C(2) = C(2)6 @ C(2)1, and C = (Hl + H,) the centre of C(,)(2), then 

C q 2 ) / c  N COV(C(2),U) = @Aic(2)imd2 c C(2) 8 @ [ A ,  A-’] .  
i c Z  

where X is an indeterminate. 

Table 1. Commutator table of C(2),j @ C(2)i .  

Working out the construction of proposition 2, we see that C(2)o = 
(h,,e,,ez,f-l,f-,) and C(2)i = ( U ~ , U ~ , U - ~ ) .  The even and odd elements of C(2)o 
and C(2)i  are just those with even and odd indices, respectively. The commuta- 
tor table of C(2)O @ C(2) i  can be found in table 1. Note that c ( 2 ) ~  constitutes a 
B ( 0 , l )  N osp( l , 2 ) ,  (hole,, f-,) a sl(2) and C(2)i is a C(2)G module. 

The isomorphism C(’)(2)/C -, AiC(2)imod2 is given explicitly by 

El - el Fl f-1 Hl ++ ho 
E ,  ++ X U - ,  F, H X-lv,. 

As in the ordinary case we are only interested in the positive part of C(’I(2). Equating 
to  zero F2 yields the following. 

Proposition 9. 
E,, F,, E, and defining relations 

The Lie superalgebra with even generator H , ,  odd generators 

[E,, F11 = HI 

[ H , ,  E,] = 2E, [HI, F11 = -2F, (15) 

[HI, E,] = -2E, 

(ad E1)3Ez = (ad E,)3E1 = 0 

is isomorphic to  the algebra Cov+(C(2),  U )  = 
being given by 

XiC(2)imod2r the isomorphism 

H ,  I+ h,  E ,  ++ el F, H f-, E,  H AV-,. 
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Table 2. Commutator table of MR. 
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0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0 
0 0 
2 x 4  22-0 
0 0 
2 x 4  22-6 

0 0 
0 0 
2x5 2 x 5  
0 0 
0 0 

-2210 -2210 
-227 -227 

-425  -425  

0 0 
0 

-(22-5 + 2-16) 
- 2 - 8  

2 - 7  - 2 - 1 1  

0 

0 
- 2 - 8  

1 1 0  
0 
0 
X I %  

XI4 

2 - 5  + 2-16 

-2xto 
0 
0 
0 

With the help of the previously mentioned package we computed part of the com- 
mutator table of MR. The part of it relevant for finding a realization of MR can be 
found in table 2. In principle this table can be checked by hand using the graded 
Jacobi identity 

Using this table and the grading of proposition 1 one can easily find a subalgebra of 
MR isomorphic to  c(2)0,  namely 

f-, = -1 2 '7 f-1 = 2 - 6  h, = x 5  
1 

e, = $(x,, + 4x6)' el  = -5(2xW3 - x-J 

From this it is not very difficult to find a set H,, E,,F, ,  E, satisfying relations (15), 
we can namely take H, = h,, E ,  = e , ,  F,  = f-l and E, = x - ~ .  

Moreover we see that MR contains a eight-dimensional subalgebra R,, = 
( c , , c , , c ~ , c ~ , ~ , , ~ , , ~ ~ , ~ ~ )  commuting with H , , E , ,  F, ,E,,  where 
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Table 2. (Continued) 

22-9 t 32-20 

2-18 - 2 - 1 2  

-"-I4 

--1'-11 

-(z-9 + 2-20] 
0 

0 
2 - 1 4  - "-10 

-2-11 

212 
0 
0 
215 

-216 

-2212 
0 
0 
0 

-222 

-2215 
0 

-42-11 
22-20 
0 
0 
21-11 
0 

0 
0 

-2210 
0 
0 

-2212 

41-10 
0 
0 
0 

4x12 
0 
0 

-2(22-5  + 2-16) 

- 2 2 1 4  

-2216 

42-20 

22-10 
0 
0 

0 
22-14 
0 
0 
2x12 
0 
0 
2215 

-2X16 

- 4 ~ 1 2  
0 
0 
0 

-2222 

-21-20 

-4215 
0 
0 
0 

c1 = x 3  
c:, = x7 - X8 

c4 = 2x4 + zll + xi3 - 216.  

r, = 2x, - x7r3 = x-, 
r ,  = x-4 

cg = 2x1 + x6 + 2 9  + 2 1 4  r4 = x - l  - x - 6  

One can easily verify that c1 , c,, c3, c4 are central elements of MR. r, ,  r,, r3, r4 satisfy 
the relations 

[r,, r,] = 2r3 [r,, r4] = -2rz [r,, r2] = Lr31 r4] = 2c, ['41 r4] = -c2 (16) 

all other commutators being zero. We can now easily prove the following theorem. 

Theorem 1. MR is isomorphic to the algebra R,, x Covt(C(2),  a). 

Proof. Let L ( H , ,  E,, F, , E,, c1, . . . , c4, T , ,  . . . , r4) be the free Lie superalgebraon even 
generators H, , c1 , . .  . , c4, r, and odd generators E,,  Fll E,, r,, r3, r4 and consider the 
Lie superalgebra morphism 4 : L ( H , ,  E , ,  F,, E,, c1,. . . , c4, r , ,  . . . , r4) -* MR given by 

1 Hl H I 5  E1 H -p(2+-3 - X - 8 )  F1 2-6 E, - x-8 

c1 23 c3 2x1 + 2 6  + xg 1 1 4  rl I+ 2x2 - x7 r3 H x-, 
c, I+ x7 - xg c4 +-+ 22, + xI1 + 213 - 2 1 6  r, t-+ x - ~  r4 x-1 - x - 6 .  

As we have already seen 4 leaves invariant relations (15) and (16), hence there is a 
Lie superalgebra morphism 4' : R,, x Covt(C(2),  a) + MR. On the other hand the 
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Lie superalgebra morphism 4 : L ( x l l . .  . , x8, x - ~ ,  . . . , x - ~ )  + R,, x Cov+(C(2), U )  

given by 

x1 H $(2c3 - 4e2 - ~ ~ f - ~  + ~ A v , )  

2 3  c1 

x5 - ho 
1 7  - -2f-2 X8 -(“2 + 2f-2) (17) 
2-1 H T4 + f-1 
x - ~  H -$(2e, - AV- , )  

2 2  H - 3 2 f - 2  - r1) 
x4 H f(2c4 + 4X2e2 + X4 f -2  - 2X3vO) 

x6 ++ $(de2 - X 2 f V 2 )  

2 - 2  - 7-3 

x-4 - r2 
2 - 5  H 4(2AV, + X 2 f - , )  x - 6  f-1 
preserves relations (13) and (14), hence there exists a Lie superalgebra morphism 
4’ : MR R,, x Cov+(C(2), 0). 4’ and $’ are easily seen to  be each other’s inverse. 

0 

4. Auto-Backlund transformation, superposition principle and relationship 
with known solution methods for the SKdV equation 

In this section we derive an auto-Backlund transformation for the SKdV equation from 
the prolongation structure and give a formula from which it is possible to  derive a 
superposition principle for solutions of the SKdV equation. Moreover we give the rela- 
tionship between the prolongation method and known solution methods for the SKdV 
equation, such as the super-Miura transformation and the super-Gardner transforma- 
tion. 

For this we need a (graded) vector field representation of C(2),  in order to  be able 
to retrieve F o ,  F1,Go, G’ from F and G, respectively, using formulae (8), (11 )  and 
(12). In the sequel we use the following vector field representation of C(2), which can 
easily be checked using formula (1) and table 1.  

1 -1 - 2  
f -2  = A; A 2  P2 ( - Y l - W y  + ( P I  - l)y-”@& 
f-l = A; 1 P 2  -1 Y p i -pa  (a, + A;lP;lyl-piat 

ho = 2/&-’yaY + (1 - 2 ~ 1 ~ 2 ~  + 2/~2’)(8, 

Equating c l , .  . . , c4, r l ,  . . . , r4 to  zero, substituting the representation (18) with A, = 
A, = p1 = p2 = 1 into the isomorphism (17), replacing X by 2X (to avoid denomina- 
tors) and finally taking yo = y and y’ = E ,  we find from equations (11) and (12) 
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F' = - (y  + A)( 

GO = -('p,,E + ( Y  - X)cp,I + 2(-yx + x2 - u)'pE + 'pep+ - 4y2x2 + 2y2u 

+ 2yu, + 4x4 + 2x2u - 2u2 + U,,) 

G' = (4yX2 - 2 y ~  + 4X3 - U,)< - ptz - (y  + A)p+ + 2(-yX - .A2 + ~ ) ' p .  

On a solution manifold of the prolonged ideal we have, as in the ordinary case 

One readily verifies the integrability conditions yZt = ytx for y and F X t  = E t ,  for < to 
be satisfied if and only if U and 'p satisfy the SKdV equation. 

If u,'p is a solution to equations (9) and ( lo) ,  we can find a Backlund transfor- 
mation by requiring ii = 6 ( ~ ( ~ ) , ' p ( ~ ) , y , < )  and $5 = @~(u(~) , 'p( ' ) ,y ,<)  to be another 
solution to  the SKdV equation. Another way of posing this is to require that the set 
of forms 

til = dt A dii + dx A dt G+ 
ti2 = dt A dii, + dx A dt ii,, 

= dt A d6,.=. + dt A dt (666, - 3&5zz) - dx A d6 

6, = d t A d ~ $ d x A d t + ,  

p2  = dt A d@, + dz A dt $5,, 

P3 = dt A d@+, + dx A dt (36$5+ + 36=$5) - dx A d$5 

be elements of the prolonged ideal I(cu,, . . . , cu4,P1,. . . ,P4,wo,w1). 
straightforward, but tedious computation we discover that 

By a rather 

is always another solution to  the SKdV equation. 
Solving U from the equation y+ = -Fo  and 'p from <= = -F' we find 

(22) 

(23) 

2 2  U = -y+ + y2 - x2 - 'pE = -y, + y - x - ( E ,  

cp = -Ez + ( Y  + A)<. 

Substituting (22) and (23) into the equations yt = -Go and It = -GI, we find that y 
and < have to satisfy the equations 

Notice that the transformation (y ,< ,  A) I+ (-y,  &e, -A) leaves invariant equations (24) 
and (25). This gives us another way of obtaining the Backlund transformation (20) 
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and (21) .  Namely, the triple ( -y , - ( , -X)  can be associated with a solution ii,$ of 
the SKdV equation. Hence we have 

2 2  y , = - ( p € + y  - A  - U  

- y ,  = + ( + y 2 - P - i i  

€2 = -io + ( Y  + A)€ 

- E, = -d  + (y  + A)€.  

Now subtracting equations (28) and (29) leads to  the relation @ = p + 2t2 and sub- 
tractingequations (26) and (27) gives ii = u + 2 y , + ( p + + ) €  = ~ + 2 y , + 2 ( ~ + $ ~ ) €  = 

As in [I] we can also use the prolongation structure to  derive a superposition 
principle for solutions of the SKdV equation. We can find it by entering the forms 

and y2 = y2(X2), 

U + 2y, + 2(y + A)€2 = U + 2y2. 

& l l " . , P 3  with the ansat2 = q ~ 1 P , Y l r € l r Y 2 , ~ 2 ) ,  where Y1 = Y l ( X l ) ,  E1 = € l ( X l )  
= t 2 ( X 2 ) .  In this way we find that 

Xf  - Xz, 4 - Y1 
d = cp  - 2(X, + A,) ( ( Y ,  - Y2) 2 (€1  - €2) + -€l Y1 - YZ - d2) Y1 - YZ 

is also another solution to the SKdV equation. Note that the first two terms of (30) con- 
stitute the superposition principle for the ordinary KdV equation as found by Wahlquist 
and Estabrook. If we use formulae (20) and (21) to  express y l , t l  and y 2 , t 2  in u,cp 
and ul, (pl and u2, cp2, respectively, equations (30) and (31) lead to  a superposition 
principle for solutions of the SKdV equation. At this point, however, we do not per- 
form this computation explicitly, because solving equations (20) and (21) gives rise to 
a cubic equation for y1 and y2.  

To give the relationship with known solution methods for the SKdV equation we 
notice that for X = 0 equations (24) and (25) exactly are the super-modified KdV 
(SMKdV) equation, whereas for X = 0 equations (22) and (23) represent the super- 
Miura transformation for the SKdV equation, which can be used to  derive the linear 
problem for the SKdV equation (cf [9]). 

More generally, by substituting X = 1/26, y = E W  + X and € = EU, equations (24) 
and (25) transform into the super-Gardner equation 

wt = -w,,, + ~ W W ,  - ~ u u , ,  + 62(6w2w, - ~ u ( u , w ) , )  

ut = -U,,, + 3(UW), + S€"(WU),. 

With the above substitution equations (22) and (23) transform into the super-Gardner 
transformation, which can be used to  show the existence of an infinite number of 
conservation laws for the SKdV equation (cf [9]). In fact this boils down t80 the fact 
that yt can be written as a total derivative. 
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5 .  Conclusions 

In this paper we have shown how the prolongation method of Wahlquist and Estabrook 
can successfully be generalized to  the case of supersymmetric equations. Application 
of this generalization to  the SKdV equation of Manin-Radul leads to the rediscovery of 
known solution methods for the equation, but moreover provides us with a very sys- 
tematic way to  derive an auto-Backlund transformation and a superposition principle. 

In [lo], using the AKNS method, a relationship was shown between the Lie su- 
peralgebra osp(l ,2)  and the super KdV equation of Kupershmidt [ll]. Using super 
prolongation theory, we have shown a similar relationship between osp(l ,2)  = B(0,l)  
and the SKdV equation of Manin-Radul (namely if we take X = 0). Moreover, for 
X # 0 we have found a relationship with the Kac-Moody Lie superalgebra C(')(2). 
It is easy to  see that C(')(2) contains Ai') as an (even) subalgebra, the positive part 
of which is exactly the main part of the prolongation algebra of the ordinary KdV 

equation. We recall that the r-function approach of Date et a1 [12] relates Ai1)  t o  the 
KdV equation in another way. It would be interesting to  know if a similar construction 
relates c(')(2) to  the SKdV equation. 
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