135 research outputs found

    Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors.

    Get PDF
    The pluripotent nature of human embryonic stem cells (hESCs) makes them convenient for deriving therapeutically relevant cells. Here we show using Wnt reporter hESC lines that the cells are heterogeneous with respect to endogenous Wnt signalling activity. Moreover, the level of Wnt signalling activity in individual cells correlates with differences in clonogenic potential and lineage-specific differentiation propensity. The addition of Wnt protein or, conversely, a small-molecule Wnt inhibitor (IWP2) reduces heterogeneity, allowing stable expansion of Wnt(high) or Wnt(low) hESC populations, respectively. On differentiation, the Wnt(high) hESCs predominantly form endodermal and cardiac cells, whereas the Wnt(low) hESCs generate primarily neuroectodermal cells. Thus, heterogeneity with respect to endogenous Wnt signalling underlies much of the inefficiency in directing hESCs towards specific cell types. The relatively uniform differentiation potential of the Wnt(high) and Wnt(low) hESCs leads to faster and more efficient derivation of targeted cell types from these populations

    Lentiviral Vectors to Probe and Manipulate the Wnt Signaling Pathway

    Get PDF
    Background: The Wnt signaling pathway plays key roles in development, adult tissue homeostasis and stem cell maintenance. Further understanding of the function of Wnt signaling in specific cell types could benefit from lentiviral vectors expressing reporters for the Wnt pathway or vectors interfering with signaling. Methodology/Principal Findings: We have developed a set of fluorescent and luminescent lentiviral vectors that report Wnt signaling activity and discriminate between negative and uninfected cells. These vectors possess a 7xTcf-eGFP or 7xTcf-FFluc (Firefly Luciferase) reporter cassette followed by either an SV40-mCherry or SV40-Puro R (puromycin N-acetyltransferase) selection cassette. We have also constructed a vector that allows drug-based selection of cells with activated Wnt signaling by placing Puro R under the control of the 7xTcf promoter. Lastly, we have expressed dominantnegative Tcf4 (dnTcf4) or constitutively active beta-catenin (b-catenin 4A) from the hEF1a promoter in a SV40-Puro R or SV40mCherry backbone to create vectors that inhibit or activate the Wnt signaling pathway. These vectors will be made available to the scientific community through Addgene. Conclusions: These novel lentiviruses are efficient tools to probe and manipulate Wnt signaling. The use of a selection cassette in Wnt-reporter viruses enables discriminating between uninfected and non-responsive cells, an important requirement for experiments where selection of clones is not possible. The use of a chemiluminescent readout enable

    The Drosophila Wnt Protein DWnt-3 Is a Secreted Glycoprotein Localized on the Axon Tracts of the Embryonic CNS

    Get PDF
    AbstractThe Wnt gene family encodes highly conserved cysteine-rich proteins which appear to act as secreted developmental signals. Both the mouse Wnt-1 gene and the Drosophila wingless (wg) gene play important roles in central nervous system (CNS) development. wg is also required earlier, in the development of the embryonic metameric body pattern. We have begun to characterize the developmental expression and role of another member of the Drosophila Wnt gene family, DWnt-3. Using antisera raised to the DWnt-3 protein, we show that the protein is secreted in vivo. The early protein expression domains include the limb and appendage primordia. Late expression domains comprise the ventral cord and supraesophageal ganglia of the CNS. Notably, DWnt-3 protein accumulates on the commissural and longitudinal axon tracts of the CNS. Ectopic expression of DWnt-3 in transgenic embryos bearing a HS-DWnt-3 construct leads to specific disruption of the commissural axon tracts of the CNS. We also show that DWnt-3 does not functionally replace wg in an in vivo assay. Experiments with a tissue culture cell line transfected with a construct encoding the DWnt-3 gene show that DWnt-3 protein is efficiently synthesized, glycosylated, proteolytically processed, and transported to the extracellular matrix and medium. DWnt-3, therefore, encodes a secreted protein, which is likely to play a role in development of the Drosophila CNS

    A Suppressor/Enhancer Screen in Drosophila Reveals a Role for Wnt-Mediated Lipid Metabolism in Primordial Germ Cell Migration

    Get PDF
    Wnt proteins comprise a large family of secreted ligands implicated in a wide variety of biological roles. WntD has previously been shown to inhibit the nuclear accumulation of Dorsal/NF-κB protein during embryonic dorsal/ventral patterning and the adult innate immune response, independent of the well-studied Armadillo/β-catenin pathway. In this paper, we present a novel phenotype for WntD mutant embryos, suggesting that this gene is involved in migration of primordial germ cells (PGC) to the embryonic gonad. Additionally, we describe a genetic suppressor/enhancer screen aimed at identifying genes required for WntD signal transduction, based on the previous observation that maternal overexpression of WntD results in lethally dorsalized embryos. Using an algorithm to narrow down our hits from the screen, we found two novel WntD signaling components: Fz4, a member of the Frizzled family, and the Drosophila Ceramide Kinase homolog, Dcerk. We show here that Dcerk and Dmulk (Drosophila Multi-substrate lipid kinase) redundantly mediate PGC migration. Our data are consistent with a model in which the activity of lipid phosphate phosphatases shapes a concentration gradient of ceramide-1-phosphate (C1P), the product of Dcerk, allowing proper PGC migration

    Structural Studies of Wnts and Identification of an LRP6 Binding Site

    Get PDF
    SummaryWnts are secreted growth factors that have critical roles in cell fate determination and stem cell renewal. The Wnt/β-catenin pathway is initiated by binding of a Wnt protein to a Frizzled (Fzd) receptor and a coreceptor, LDL receptor-related protein 5 or 6 (LRP5/6). We report the 2.1 Å resolution crystal structure of a Drosophila WntD fragment encompassing the N-terminal domain and the linker that connects it to the C-terminal domain. Differences in the structures of WntD and Xenopus Wnt8, including the positions of a receptor-binding β hairpin and a large solvent-filled cavity in the helical core, indicate conformational plasticity in the N-terminal domain that may be important for Wnt-Frizzled specificity. Structure-based mutational analysis of mouse Wnt3a shows that the linker between the N- and C-terminal domains is required for LRP6 binding. These findings provide important insights into Wnt function and evolution

    Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination.

    Get PDF
    Permanent damage to white matter tracts, comprising axons and myelinating oligodendrocytes, is an important component of brain injuries of the newborn that cause cerebral palsy and cognitive disabilities, as well as multiple sclerosis in adults. However, regulatory factors relevant in human developmental myelin disorders and in myelin regeneration are unclear. We found that AXIN2 was expressed in immature oligodendrocyte progenitor cells (OLPs) in white matter lesions of human newborns with neonatal hypoxic-ischemic and gliotic brain damage, as well as in active multiple sclerosis lesions in adults. Axin2 is a target of Wnt transcriptional activation that negatively feeds back on the pathway, promoting β-catenin degradation. We found that Axin2 function was essential for normal kinetics of remyelination. The small molecule inhibitor XAV939, which targets the enzymatic activity of tankyrase, acted to stabilize Axin2 levels in OLPs from brain and spinal cord and accelerated their differentiation and myelination after hypoxic and demyelinating injury. Together, these findings indicate that Axin2 is an essential regulator of remyelination and that it might serve as a pharmacological checkpoint in this process

    Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells

    Get PDF
    In response to physiological demand, the pituitary gland generates new hormonesecreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate that proliferation of neighbouring committed progenitor cells declines, demonstrating that progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as paracrine signalling centres to coordinate the proliferation of neighbouring cells

    Purified Wnt5a Protein Activates or Inhibits β-Catenin–TCF Signaling Depending on Receptor Context

    Get PDF
    The Wnts comprise a large class of secreted proteins that control essential developmental processes such as embryonic patterning, cell growth, migration, and differentiation. In the most well-understood “canonical” Wnt signaling pathway, Wnt binding to Frizzled receptors induces β-catenin protein stabilization and entry into the nucleus, where it complexes with T-cell factor/lymphoid enhancer factor transcription factors to affect the transcription of target genes. In addition to the canonical pathway, evidence for several other Wnt signaling pathways has accumulated, in particular for Wnt5a, which has therefore been classified as a noncanonical Wnt family member. To study the alternative mechanisms by which Wnt proteins signal, we purified the Wnt5a protein to homogeneity. We find that purified Wnt5a inhibits Wnt3a protein–induced canonical Wnt signaling in a dose-dependent manner, not by influencing β-catenin levels but by downregulating β-catenin–induced reporter gene expression. The Wnt5a signal is mediated by the orphan tyrosine kinase Ror2, is pertussis toxin insensitive, and does not influence cellular calcium levels. We show that in addition to its inhibitory function, Wnt5a can also activate β-catenin signaling in the presence of the appropriate Frizzled receptor, Frizzled 4. Thus, this study shows for the first time that a single Wnt ligand can initiate discrete signaling pathways through the activation of two distinct receptors. Based on these and additional observations, we propose a model wherein receptor context dictates Wnt signaling output. In this model, signaling by different Wnt family members is not intrinsically regulated by the Wnt proteins themselves but by receptor availability

    A critical role for endocytosis in Wnt signaling

    Get PDF
    BACKGROUND: The Wnt signaling pathway regulates many processes during embryonic development, including axis specification, organogenesis, angiogenesis, and stem cell proliferation. Wnt signaling has also been implicated in a number of cancers, bone density maintenance, and neurological conditions during adulthood. While numerous Wnts, their cognate receptors of the Frizzled and Arrow/LRP5/6 families and downstream pathway components have been identified, little is known about the initial events occurring directly after receptor activation. RESULTS: We show here that Wnt proteins are rapidly endocytosed by a clathrin- and dynamin-mediated process. While endocytosis has traditionally been considered a principal mechanism for receptor down-regulation and termination of signaling pathways, we demonstrate that interfering with clathrin-mediated endocytosis actually blocks Wnt signaling at the level of β-catenin accumulation and target gene expression. CONCLUSION: A necessary component of Wnt signaling occurs in a subcellular compartment distinct from the plasma membrane. Moreover, as internalized Wnts transit partially through the transferrin recycling pathway, it is possible that a "signaling endosome" serves as a nexus for activated Wnt pathway components
    corecore