499 research outputs found

    The asymmetric profile of the H76 alpha line emission from MWC349

    Get PDF
    MWC349 is an emission-line star found by Merrill, Humason and Burwell (1932). Braes, Habing and Schoenmaker (1972) discovered that it is a strong radio source. The radio emission originates in a massive ionized wind that is expanding with a velocity of about 50 km s(-1). Its continuum spectrum fits well a nu(0.6) power law from the cm wavelengths to the far-IR. Radio recombination line emission from the envelope of MWC349 was first detected by Altenhoff, Strittmatter and Wendker (1981). We have obtained good signal-to-noise ratio, Very Large Array observations of the H76 alpha radio recombination line from the ionized wind of MWC349. Our data reveal that the profile is markedly asymmetric, with a steep rise on the blue side. This asymmetry could be due to non-LTE effects in the formation and transfer of the line or to intrinsic asymmetries in the envelope. Our analysis suggests that most probably the peculiar profile is caused by a non-LTE enhancement of the line emission from the side of the envelope nearer to the observer. This asymmetry has the opposite sense than that observed in optical and IR recombination lines, where a different effect (absorption of the stellar continuum by the gas in the wind between the star and the observer) is known to be dominant, leading to the classic P Cygni profile. We propose that the profiles of the radio recombination lines from ionized stellar winds will have this characteristic shape, while optical and IR recombination lines are characterized by P Cygni-like profiles. Unfortunately, at present the detection of radio recombination lines from ionized stellar winds is only feasible for MWC349 and a few other objects

    Phase diagram and magnetic properties of La1x_{1-x}Cax_xMnO3_3 compound for 0x0.230\leq x \leq 0.23

    Full text link
    In this article a detailed study of La1x_{1-x}Cax_xMnO3_3 (0x0.230\leq x \leq 0.23) phase diagram using powder x-ray diffraction and magnetization measurements is presented. Unfortunately, in the related literature no properly characterized samples have been used, with consequence the smearing of the real physics in this complicated system. As the present results reveal, there are two families of samples. The first family concerns samples prepared in atmosphere (P(O2)=0.2P({\rm O}_2)=0.2 Atm) which are all ferromagnetic with Curie temperature rising with xx. The second family concerns samples, where a post annealing in nearly zero oxygen partial pressure is applied. These samples show a canted antiferromagnetic structure for 0x0.10\leq x \leq 0.1 below TNT_N, while for 0.125x<0.230.125\leq x <0.23 an unconventional ferromagnetic insulated phase is present below TcT_c. The most important difference between nonstoichiometric and stoichiometric samples concerning the magnetic behavior, is the anisotropy in the exchange interactions, in the stoichiometric samples putting forward the idea that a new orbital ordered phase is responsible for the ferromagnetic insulating regime in the La1x_{1-x}Cax_xMnO3_3 compound

    An Attempt to Observe Debris from the Breakup of a Titan 3C-4 Transtage

    Get PDF
    In February 2007 dedicated observations were made of the orbital space predicted to contain debris from the breakup of the Titan 3C-4 transtage back on February 21, 1992. These observations were carried out on the Michigan Orbital DEbris Survey Telescope (MODEST) in Chile with its 1.3deg field of view. The search region or orbital space (inclination and right ascension of the ascending node (RAAN) was predicted using NASA#s LEGEND (LEO-to-GEO Environment Debris) code to generate a Titan debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. Barker, et. al, (AMOS Conference Proceedings, 2006, pp. 596-604) used similar LEGEND predictions to correlate survey observations made by MODEST (February 2002) and found several possible night-to-night correlations in the limited survey dataset. One conc lusion of the survey search was to dedicate a MODEST run to observing a GEO region predicted to contain debris fragments and actual Titan debris objects (SSN 25000, 25001 and 30000). Such a dedicated run was undertaken with MODEST between February 17 and 23, 2007 (UT dates). MODEST#s limiting magnitude of 18.0 (S\N approx.10) corresponds to a size of 22cm assuming a diffuse Lambertian albedo of 0.2. However, based on observed break-up data, we expect most debris fragments to be smaller than 22cm which implies a need to increase the effective sensitivity of MODEST for smaller objects. MODEST#s limiting size can be lowered by increasing the exposure time (20 instead of 5 seconds) and applying special image processing. The special processing combines individual CCD images to detect faint objects that are invisible on a single CCD image. Sub-images are cropped from six consecutive CCD images with pixel shifts between images being consistent with the predicted movement of a Titan object. A median image of all the sub-images is then created leaving only those objects with the proper Titan motion. Limiting the median image in this manner brings the needed computer time to process all images taken on one night down to about 50 hours of CPU time

    Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms

    Get PDF
    INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved

    The Casimir energy of skyrmions in the 2+1-dimensional O(3)-model

    Get PDF
    One-loop quantum corrections to the classical vortices in 2+1 dimensional O(3)-models are evaluated. Skyrme and Zeeman potential terms are used to stabilize the size of topological solitons. Contributions from zero modes, bound-states and scattering phase-shifts are calculated for vortices with winding index n=1 and n=2. For both cases the S-matrix shows a pronounced series of resonances for magnon-vortex scattering in analogy to the well-established baryon resonances in hadron physics, while vortices with n>2 are already classically unstable against decay. The quantum corrections destabilize the classically bound n=2 configuration. Approximate independence of the results with respect to changes in the renormalization scale is demonstrated.Comment: 24 pages LaTeX, 14 figure

    Prioritising prevention strategies for patients in antiretroviral treatment programmes in resource-limited settings

    Get PDF
    Expanded access to antiretroviral therapy (ART) offers opportunities to strengthen HIV prevention in resource-limited settings. We invited 27 ART programmes from urban settings in Africa, Asia and South America to participate in a survey, with the aim to examine what preventive services had been integrated in ART programmes. Twenty-two programmes participated; eight (36%) from South Africa, two from Brazil, two from Zambia and one each from Argentina, India, Thailand, Botswana, Ivory Coast, Malawi, Morocco, Uganda and Zimbabwe and one occupational programme of a brewery company included five countries (Nigeria, Republic of Congo, Democratic Republic of Congo, Rwanda and Burundi). Twenty-one sites (96%) provided health education and social support, and 18 (82%) provided HIV testing and counselling. All sites encouraged disclosure of HIV infection to spouses and partners, but only 11 (50%) had a protocol for partner notification. Twenty-one sites (96%) supplied male condoms, seven (32%) female condoms and 20 (91%) provided prophylactic ART for the prevention of mother-to child transmission. Seven sites (33%) regularly screened for sexually transmitted infections (STI). Twelve sites (55%) were involved in activities aimed at women or adolescents, and 10 sites (46%) in activities aimed at serodiscordant couples. Stigma and discrimination, gender roles and funding constraints were perceived as the main obstacles to effective prevention in ART programmes. We conclude that preventive services in ART programmes in lower income countries focus on health education and the provision of social support and male condoms. Strategies that might be equally or more important in this setting, including partner notification, prompt diagnosis and treatment of STI and reduction of stigma in the community, have not been implemented widely

    Measurement of Nuclear Transparency for the A(e,e' pi^+) Reaction

    Full text link
    We have measured the nuclear transparency of the A(e,e' pi^+) process in ^{2}H,^{12}C, ^{27}Al, ^{63}Cu and ^{197}Au targets. These measurements were performed at the Jefferson Laboratory over a four momentum transfer squared range Q^2 = 1.1 - 4.7 (GeV/c)^2. The nuclear transparency was extracted as the super-ratio of (σA/σH)(\sigma_A/\sigma_H) from data to a model of pion-electroproduction from nuclei without pi-N final state interactions. The Q^2 and atomic number dependence of the nuclear transparency both show deviations from traditional nuclear physics expectations, and are consistent with calculations that include the quantum chromodynamical phenomenon of color transparency.Comment: 5 pages, 3 figs Changes to figure 2 and 3 (error band updated and theory curves updated

    Study of the A(e,e'π+\pi^+) Reaction on 1^1H, 2^2H, 12^{12}C, 27^{27}Al, 63^{63}Cu and 197^{197}Au

    Full text link
    Cross sections for the p(e,eπ+e,e'\pi^{+})n process on 1^1H, 2^2H, 12^{12}C, 27^{27}Al, 63^{63}Cu and 197^{197}Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from Q2Q^2=1.1 to 4.8 GeV2^2 for a fixed center of mass energy of WW=2.14 GeV. The ratio of σL\sigma_L and σT\sigma_T was extracted from the measured cross sections for 1^1H, 2^2H, 12^{12}C and 63^{63}Cu targets at Q2Q^2 = 2.15 and 4.0 GeV2^2 allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of Q2Q^2 are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p(e,eπ+e,e'\pi^{+})n reaction from nuclear targets.Comment: 28 pages, 19 figures, submited to PR

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively

    Nuclear transparency and effective kaon-nucleon cross section from the A(e, e'K+) reaction

    Full text link
    We have determined the transparency of the nuclear medium to kaons from A(e,eK+)A(e,e^{'} K^{+}) measurements on 12^{12}C, 63^{63}Cu, and 197^{197}Au targets. The measurements were performed at the Jefferson Laboratory and span a range in four-momentum-transfer squared Q2^2=1.1 -- 3.0 GeV2^2. The nuclear transparency was defined as the ratio of measured kaon electroproduction cross sections with respect to deuterium, (σA/σD\sigma^{A}/\sigma^{D}). We further extracted the atomic number (AA) dependence of the transparency as parametrized by T=(A/2)α1T= (A/2)^{\alpha-1} and, within a simple model assumption, the in-medium effective kaon-nucleon cross sections. The effective cross sections extracted from the electroproduction data are found to be smaller than the free cross sections determined from kaon-nucleon scattering experiments, and the parameter α\alpha was found to be significantly larger than those obtained from kaon-nucleus scattering. We have included similar comparisons between pion- and proton-nucleon effective cross sections as determined from electron scattering experiments, and pion-nucleus and proton-nucleus scattering data.Comment: 7 pages, 5 figure
    corecore