2,855 research outputs found

    Robust, reproducible, industrialized, standard membrane feeding assay for assessing the transmission blocking activity of vaccines and drugs against Plasmodium falciparum.

    Get PDF
    BackgroundA vaccine that interrupts malaria transmission (VIMT) would be a valuable tool for malaria control and elimination. One VIMT approach is to identify sexual erythrocytic and mosquito stage antigens of the malaria parasite that induce immune responses targeted at disrupting parasite development in the mosquito. The standard Plasmodium falciparum membrane-feeding assay (SMFA) is used to assess transmission-blocking activity (TBA) of antibodies against candidate immunogens and of drugs targeting the mosquito stages. To develop its P. falciparum sporozoite (SPZ) products, Sanaria has industrialized the production of P. falciparum-infected Anopheles stephensi mosquitoes, incorporating quantitative analyses of oocyst and P. falciparum SPZ infections as part of the manufacturing process.MethodsThese capabilities were exploited to develop a robust, reliable, consistent SMFA that was used to assess 188 serum samples from animals immunized with the candidate vaccine immunogen, Pfs25, targeting P. falciparum mosquito stages. Seventy-four independent SMFAs were performed. Infection intensity (number of oocysts/mosquito) and infection prevalence (percentage of mosquitoes infected with oocysts) were compared between mosquitoes fed cultured gametocytes plus normal human O(+) serum (negative control), anti-Pfs25 polyclonal antisera (MRA39 or MRA38, at a final dilution in the blood meal of 1:54 as positive control), and test sera from animals immunized with Pfs25 (at a final dilution in the blood meal of 1:9).ResultsSMFA negative controls consistently yielded high infection intensity (mean = 46.1 oocysts/midgut, range of positives 3.7-135.6) and infection prevalence (mean = 94.2%, range 71.4-100.0) and in positive controls, infection intensity was reduced by 81.6% (anti-Pfs25 MRA39) and 97.0% (anti-Pfs25 MRA38), and infection prevalence was reduced by 12.9 and 63.5%, respectively. A range of TBAs was detected among the 188 test samples assayed in duplicate. Consistent administration of infectious gametocytes to mosquitoes within and between assays was achieved, and the TBA of anti-Pfs25 control antibodies was highly reproducible.ConclusionsThese results demonstrate a robust capacity to perform the SMFA in a medium-to-high throughput format, suitable for assessing large numbers of experimental samples of candidate antibodies or drugs

    Key epidemiological indicators and spatial autocorrelation patterns across five waves of COVID-19 in Catalonia

    Get PDF
    Epidemiology; StatisticsEpidemiología; EstadísticasEpidemiologia; EstadístiquesThis research studies the evolution of COVID-19 crude incident rates, effective reproduction number R(t) and their relationship with incidence spatial autocorrelation patterns in the 19 months following the disease outbreak in Catalonia (Spain). A cross-sectional ecological panel design based on n = 371 health-care geographical units is used. Five general outbreaks are described, systematically preceded by generalized values of R(t) > 1 in the two previous weeks. No clear regularities concerning possible initial focus appear when comparing waves. As for autocorrelation, we identify a wave’s baseline pattern in which global Moran’s I increases rapidly in the first weeks of the outbreak to descend later. However, some waves significantly depart from the baseline. In the simulations, both baseline pattern and departures can be reproduced when measures aimed at reducing mobility and virus transmissibility are introduced. Spatial autocorrelation is inherently contingent on the outbreak phase and is also substantially modified by external interventions affecting human behavior.All the authors acknowledge funding from the Social Observatory of the “la Caixa” Foundation as part of the project LCF/PR/SR20/52550011. Partial funding was also received from the Spanish Ministry of Science and Innovation (PID2020-117029RB-I00). Joan Benach gratefully acknowledges the financial support by ICREA under the ICREA Academia programme. J. Fernández-Gracia was supported by Direcció General de Política Universitària i Recerca from the government of the Balearic Islands through the postdoctoral program Vicenç Mut. J. P. Rodríguez is supported by Juan de la Cierva Formacion program (Ref. FJC2019-040622-I) funded by MCIN/AEI/ https://doi.org/10.13039/501100011033

    Persistent changes in exploration and hyperactivity coexist with cognitive impairment in mice withdrawn from chronic cocaine

    Get PDF
    Repeated cocaine exposure induces lasting neurobehavioral adaptations such as cognitive decline in animal models. However, persistent changes in spontaneous –unconditioned- motor and exploratory responses are scarcely reported. In this study, mice were administered with cocaine (20 mg/kg/day) or vehicle for 12 consecutive days. After 24 days of drug abstinence, a behavioral assessment was carried out in drug-free conditions and in unfamiliar environments (i.e. no cocaine-associated cues were presented). The cocaine-withdrawn mice showed cognitive deficits in spontaneous alternation behavior and place recognition memory. Importantly, they also displayed hyperlocomotion, increased rearing activity and altered exploratory patterns in different tasks. In the forced swimming test, they were more active (struggled/climbed more) when trying to escape from the water albeit showing normal immobility behavior. In conclusion, in addition to cognitive deficits, chronic cocaine in rodents may induce long-lasting alterations in exploratory activity and psychomotor activation that are triggered even in absence of drug-related stimuli.This study was funded by grants from the Spanish Ministry of Economy and Competitiveness (MINECO, Agencia Estatal de Investigación –AEI-) cofounded by the European Regional Development Fund-FEDER, UE- (PSI2015–73,156-JIN to E.C–O.; PSI2017–82604R to L.J.S.), RETICS Red de Trastornos Adictivos (ERDF-EU; RD16/0017/0001 to F.R.F.) and University of Málaga (B4: ‘Ayudas para Proyectos Puente’to E.C–O). Funding for open access charge: Universidad de Málaga /CBUA. Authors M.C.M-P., F. A-G. and S. G-R. hold predoctoral grants from the Spanish Ministry of Science, Innovation and Universities (FPU17/00276 to M.C.M-P.; PRE2018–085673 to F.A-G.; and FPU18/00941 to S.G-R.). Author D.L.G.M. holds a postdoctoral grant from University of Málaga (A.3. Plan Propio de Investigación y Transferencia Universidad de Málaga)

    New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites:an open resource

    Get PDF
    Using whole-cell phenotypic assays, the GlaxoSmithKline high-throughput screening (HTS) diversity set of 1.8 million compounds was screened against the three kinetoplastids most relevant to human disease, i.e. Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Secondary confirmatory and orthogonal intracellular anti-parasiticidal assays were conducted, and the potential for non-specific cytotoxicity determined. Hit compounds were chemically clustered and triaged for desirable physicochemical properties. The hypothetical biological target space covered by these diversity sets was investigated through bioinformatics methodologies. Consequently, three anti-kinetoplastid chemical boxes of ~200 compounds each were assembled. Functional analyses of these compounds suggest a wide array of potential modes of action against kinetoplastid kinases, proteases and cytochromes as well as potential host–pathogen targets. This is the first published parallel high throughput screening of a pharma compound collection against kinetoplastids. The compound sets are provided as an open resource for future lead discovery programs, and to address important research questions.The support and funding of Tres Cantos Open Lab Foundation is gratefully acknowledgedPeer reviewe

    2 deoxy-D-glucose augments the mitochondrial respiratory chain in heart

    Get PDF
    2-Deoxy-D-glucose (2DG) has recently received emergency approval for the treatment of COVID-19 in India, after a successful clinical trial. SARS-CoV-2 infection of cultured cells is accompanied by elevated glycolysis and decreased mitochondrial function, whereas 2DG represses glycolysis and stimulates respiration, and restricts viral replication. While 2DG has pleiotropic effects on cell metabolism in cultured cells it is not known which of these manifests in vivo. On the other hand, it is known that 2DG given continuously can have severe detrimental effects on the rodent heart. Here, we show that the principal effect of an extended, intermittent 2DG treatment on mice is to augment the mitochondrial respiratory chain proteome in the heart; importantly, this occurs without vacuolization, hypertrophy or fibrosis. The increase in the heart respiratory chain proteome suggests an increase in mitochondrial oxidative capacity, which could compensate for the energy deficit caused by the inhibition of glycolysis. Thus, 2DG in the murine heart appears to induce a metabolic configuration that is the opposite of SARS-CoV-2 infected cells, which could explain the compound's ability to restrict the propagation of the virus to the benefit of patients with COVID-19 disease
    • 

    corecore