156 research outputs found

    Antibacterial PHAs coating for titanium implants

    Get PDF
    Biomaterial-associated infection is a serious complication of modern implantation surgery. Thus, the improvement of implant surfaces is required to avoid the first stage for biofilm formation, bacterial adhesion. The current research addresses this issue by developing drug delivery systems (DDS) consisting of antibiotic-loaded polyhydroxyalkanoates (PHAs) coatings on titanium implants. Dip-coating technique was used to achieve optimal coatings with biodegradable biopolyesters, polyhydroxybutyrate (PHB) and its copolymer, polyhydroxybutyrate-co-hydroxyvalerate (PHBV). The coatings were completely characterized (wettability, topography, thickness and roughness), and studies of drug delivery, toxicity, antibacterial effect, and cell adhesion were performed. For both of biopolymers, surfaces were partially covered with 1 and 3 immersions, while with 6, they were completely covered. Although both antibiotic-loaded biopolymer coatings assure the protection against bacteria populations, PHBV coatings are closer to the desired release profile; its faster degradation provides for a greater and more stable drug release for a given period of time compared to PHB coatings. The use of coatings with different drug concentration per layer results in more controlled and homogeneous releases. The DDS designed not only assure to avoid the first stage of bacterial adhesion, but also their proliferation and biofilm formation, since the coatings degrade with time under physiological conditions, guaranteeing a prolonged drug release.Preprin

    Biofunctionalization of REDV elastin-like recombinamers improves endothelialization on CoCr alloy surfaces for cardiovascular applications

    Get PDF
    To improve cardiovascular implant success, metal-based stents are designated to modulate endothelial cells adhesion and migration in order to prevent restenosis and late thrombosis diseases. Biomimetic coatings with extra-cellular matrix adhesive biomolecules onto stents surfaces are a strategy to recover a healthy endothelium. However, the appropriate bioactive sequences to selective promote growth of endothelium and the biomolecules surface immobilization strategy remains to be elucidated. In this study, biofunctionalization of cobalt chromium, CoCr, alloy surfaces with elastin-like recombinamers, ELR, genetically modified with an REDV sequence, was performed to enhance metal surfaces endothelialization. Moreover, physical adsorption and covalent bonding were used as biomolecules binding strategies onto CoCr alloy. Surfaces were activated with plasma and etched with sodium hydroxide previous to silanization with 3-chloropropyltriethoxysilane and functionalized with the ELR. CoCr alloy surfaces were successfully biofunctionalized and the use of an ELR with an REDV sequence, allows conferring bioactivity to the biomaterials surface, demonstrating a higher cell adhesion and spreading of HUVEC cells on the different CoCr surfaces. This effect is emphasized as increases the amount of immobilized biomolecules and directly related to the immobilization technique, covalent bonding, and the increase of surface charge electronegativity. Our strategy of REDV elastin-like recombinamers immobilization onto CoCr alloy surfaces via covalent bonding through organosilanes provides a bioactive surface that promotes endothelial cell adhesion and spreading. (C) 2015 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author’s final draft

    Laser-deposited beta type Ti-42Nb alloy with anisotropic mechanical properties for pioneering biomedical implants with a very low elastic modulus

    Get PDF
    Present commercial titanium alloy implants have an elastic modulus higher than 100 GPa, whereas that of the cortical bone is much smaller (17–28 GPa). This elastic modulus mismatch produces a stress shielding effect and the resorption of the bone surrounding the implant. In the present work, a fiber texture is developed in ß type Ti-42Nb (wt%) alloy ingots generated by laser-directed energy deposition (LDED) in order to achieve anisotropic mechanical properties. In addition, we demonstrate that laser-deposited ß type Ti-42Nb alloy ingots with an intense fiber texture exhibit a very low elastic modulus in the building direction (Ez 700 MPa) and tensile (UTSz > 700 MPa) strengths. Laser-deposited Ti-42Nb alloy enhances the osteoinductive effect, promoting the adhesion, proliferation, and spreading of human osteoblast-like cells. Hence, we propose that laser-deposited ß type Ti-42Nb alloy is a potentially promising candidate for the manufacturing of pioneering biomedical implants with a very low elastic modulus that can suppress stress shielding.Peer ReviewedPostprint (published version

    Novedades en el tratamiento quirúrgico del cáncer de mama

    Get PDF
    Adecuate surgical treatment is mandatory in order to achieve cure in patients with breast cancer. Breast surgeons have to choice the best surgical technique over the breast and over the axillary nodes. Two new surgical aproaches have been implemented in the last decade: oncoplastic conservative surgery and sentinel lymph node biopsy. Oncoplastic surgery provides oncologic safety results and good cosmetic outcome. In this paper the technical steps and indications of different oncoplastic techniques in conservative breast surgery are review. Concerning to axillary surgery sentinel lymph node biopsy is the gold standard. However there are several controversial points in sentinel node biopsy referring to indications, identification and histological findings

    Relative roles of endothelin-1 and angiotensin II in experimental post-ischaemic acute renal failure

    Get PDF
    Background. The relative roles of endothelin (ET)-1 and angiotensin (ANG) II in post-ischaemic acute renal failure (ARF) have not been fully established so far. With the aim of contributing to this goal, we assessed in this study the effect of ANG II and ET-1 blockade on the course of post-ischaemic-ARF. Methods. Anaesthetized Wistar rats received i.v. either bosentan (a dual ET receptor antagonist; 10 mg/kg body weight) or losartan [ANG II type 1 (AT(1)) receptor antagonist; 5 or 10 mg/kg body weight] or both, 20 min before, during and 20 min after ischaemia. Rats in the control group received the vehicle via the same route. Survival and renal function were monitored up to 8 days after the ischaemic challenge, while haemodynamic parameters were measured 24 h after ARF. Results. Our results demonstrate that bosentan treatment has a more beneficial effect on experimental ARF than losartan. The survival rate was remarkably higher in bosentan-treated rats than in both rat groups treated with losartan. In the ARF group treated with bosentan, renal blood flow (RBF) was increased by 129% in comparison with the untreated ARF group, whereas in the losartan-treated ARF groups, RBF was only similar to35 or 38% higher than in control ARF rats. The glomerular filtration rate was markedly higher in bosentan-treated rats than in all other ARF groups on the first and second day after ischaemia. Tubular cell injury was less severe in bosentan-treated rats than in the control ARF rats, but in losartan-treated groups it was similar to that in the ARF group. Concurrent blockade of both ET and AT(1) receptors did not improve ARF because this treatment induced a marked decrease in blood pressure. Conclusions. These results suggest that ET-1 blockade is more efficient in improving the early course of post-ischaemic renal injury than ANG II inhibition, and that blockade of ET-1 might be effective in prophylaxis of ischaemic ARF

    Nuevos horizontes en cirugía mamaria. Cirugía radioguiada y biopsia selectiva de ganglio centinela

    Get PDF
    Although needle-wire localization is the most commonly used localization technique for nonpalpable breast lesion biopsy, the technique of radioguided occult lesion localization (ROLL), is becoming increasingly used for open-surgery diagnosis in such cases. Sentinel lymph node biopsy(SLNB) is based on the hypothesis that lymphatic drainage from a tumor reaches the sentinel node(SLN) first and that it can be identified accurately and removed. If SLN exactly reflects the lymph-node status, a negative SLN for metastasis might allow complete axillary lymph node dissection (ALDN) to be avoided

    Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery

    Get PDF
    Metallic implants have some limitations related to bioactivity and bacteria colonization leading to infections. In this regard, calcium phosphate coatings can be used as carrier for drug delivery in order to improve the mentioned drawbacks. The present work proposes the introduction of an antibacterial agent in the course of a pulsed and reverse pulsed electrodeposition. Calcium phosphate coatings were prepared in 30min using different pulse waveforms (unipolar-bipolar), current densities (2–5mA/cm2) and temperatures (40–60°C). Mechanical stability of the as-coated surfaces was studied in order to select the optimal electrodeposition conditions. Subsequently, selected coatings were loaded with an antiseptic agent, chlorhexidine digluconate (CHX), via a single-step co-deposition procedure. CHX concentration added to the electrolyte was adjusted to 3mM based on the antibacterial efficacy of the loaded coatings evaluated in vitro with Staphylococcus aureus and Escherichia coli bacteria strains. Whereasthe same chlorhexidineconcentration was addedto the electrolyte, results showedthat the amount of CHX loaded was different for each condition while release kinetics was maintained. The results of this work demonstrate that a pulsed co-deposition strategy has great potential to modulate local delivery of antibacterial agents such as chlorhexidine digluconate, which may prevent early phase infections of metallic implants after insertion

    Propuesta de un nuevo modelo microquirúrgico para el estudio de la endometriosis inducida en rata Wistar. Resultados preliminares

    Get PDF
    The current knowledge status on the patogenesis of endometriosis as well as devastating consequences of disease evolution in women's reproductive health, have promoted researchers advances in a great manner during last years. The immunologic and neangiogenesis systems implication have opened new ways of knowledge over classic theories from the beginning of the xx century. The experimental resesearch, using animal induction models. Below we explain the first steps a new induction model ("PGR1-HotDog"), based on Wistar rats using a new disease autogeneration system, created for te study of the early stages of the endometriosis

    The role of PKCzeta in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil

    Get PDF
    While immunodeficiency of immaturity of the neonate has been considered important as the basis for unusual susceptibility to infection, it has also been recognized that the ability to progress from an immature Th2 cytokine predominance to a Th1 profile has relevance in determining whether children will develop allergy, providing an opportunity for epigenetic regulation through environmental pressures. However, this notion remains relatively unexplored. Here, we present evidence that there are two major control points to explain the immunodeficiency in cord blood (CB) T-cells, a deficiency in interleukin (IL)-12 (IL-12) producing and IL-10 overproducing accessory cells, leading to a decreased interferon γ (IFNγ) synthesis and the other, an intrinsic defect in T-cell protein kinase C (PKC) ζ (PKCζ) expression. An important finding was that human CB T-cells rendered deficient in PKCζ, by shRNA knockdown, develop into low tumour necrosis factor α (TNFα) and IFNγ but increased IL-13 producing cells. Interestingly, we found that the increase in PKCζ levels in CB T-cells caused by prenatal supplementation with fish oil correlated with modifications of histone acetylation at the PKCζ gene (PRKCZ) promoter. The data demonstrate that PKCζ expression regulates the maturation of neonatal T-cells into specific functional phenotypes and that environmental influences may work via PKCζ to regulate these phenotypes and disease susceptibility.Hani Harb, James Irvine, Manori Amarasekera, Charles S. Hii, Dörthe A. Kesper, YueFang Ma, Nina D′Vaz, Harald Renz, Daniel P. Potaczek, Susan L. Prescott and Antonio Ferrant
    corecore