63 research outputs found

    Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas

    Get PDF
    To evaluate the use of alphavirus vectors for tumor treatment we have constructed and compared two Semliki Forest virus (SFV) vectors expressing different levels of IL-12. SFV-IL-12 expresses both IL-12 subunits from a single subgenomic promoter, while in SFV-enhIL-12 each IL-12 subunit is expressed from an independent subgenomic promoter fused to the SFV capsid translation enhancer. This latter strategy provided an eightfold increase of IL-12 expression. We chose the poorly immunogenic MC38 colon adenocarcinoma model to evaluate the therapeutic potential of SFV vectors. A single intratumoral injection of 10(8) viral particles of SFV-IL-12 or SFV-enh-IL-12 induced>or=80% complete tumor regressions with long-term tumor-free survival. However, lower doses of SFV-enhIL-12 were more efficient than SFV-IL-12 in inducing antitumoral responses, indicating a positive correlation between the IL-12 expression level and the therapeutic effect. Moreover, repeated intratumoral injections of suboptimal doses of SFV-enhIL-12 increased the antitumoral response. In all cases SFV vectors were more efficient at eliminating tumors than a first-generation adenovirus vector expressing IL-12. In addition, the antitumoral effect of SFV vectors was only moderately affected by preimmunization of animals with high doses of SFV vectors. This antitumoral effect was produced, at least partially, by a potent CTL-mediated immune response

    Bioprocess optimization for generation of hepatocytes derived from hiPSC and its application in primary hyperoxaluria type 1 disease modelling

    Get PDF
    Primary hyperoxaluria type 1 (PH1) is a rare metabolic disorder caused by mutations in the hepatic alanine-glyoxylate aminotransferase (AGT). Defective AGT in PH1 patients is characterized by excessive oxalate synthesis, which leads to a broad range of kidney complications including the end-stage renal disease [1]. Combined liver-kidney transplantation remains the only effective treatment; however significant morbidity, mortality and costs encouraged the development of advanced cell- and gene-based therapies for PH1. Thus, our aim was to implement a novel strategy to generate high numbers of functional hepatocyte-like cells (HLC) from PH1 patient derived human induced pluripotent stem cells (PH1.hiPSC), for PH1 disease modelling and further application in drug and therapeutics development. PH1.HLC were differentiated as 3D aggregates in stirred-tank bioreactors (STB) operated in perfusion, according to the integrated bioprocess previously developed by our group [2,3]. Briefly, PH1.hiPSC were aggregated and expanded in STB for 4 days preceding the hepatic differentiation. hiPSC to HLC commitment begin by culturing the 3D aggregates in different medium formulations (from Takara BioEurope AB). Two different dissolved oxygen (pO2) conditions were explored: a normoxia (pO2: uncontrolled, 95% air, 5% CO2) throughout the differentiation process (21 days) and a hypoxia with a low oxygen (pO2: 4% O2) environment between day 4 and day 14 of the differentiation. Our results showed that PH1-hiPSC successfully proliferated as 3D aggregates with an expansion factor of 6-fold after 4 days in culture while maintaining their pluripotent phenotype. Low dissolved oxygen concentration during hepatic specification, generate higher yields of HLC and improve gene expression levels of ALB, A1AT and CYP3A4 hepatic markers when compared with HLC differentiated under uncontrolled pO2 conditions. Moreover, Flow cytometry analysis, revealed a higher hepatocyte content of 80% (low pO2) vs 43% (uncontrolled pO2) for albumin, showing a higher process efficiency. Transcriptomic analysis using RNAseq confirmed that hepatocyte differentiation was enhanced in the low dissolved oxygen condition. In addition, these PH1.HLC showed functional characteristics typical of hepatocytes including production of important hepatic proteins (albumin, alpha 1 antitrypsin), urea and bile acids. PH1.HLC also display drug metabolization capacity, CYP450 activity and, by histological assessment, glycogen storage and positive staining for albumin and AFP markers. To further characterize the PH1 disease features, we performed a detailed metabolomic analysis and demonstrated that PH1.HLC show defective AGT activity with significantly higher production and secretion of oxalate for PH1.HLC when compared with HLC generated from healthy counterparts. Overall, controlling the dissolved oxygen concentration at key stages of the hepatic differentiation process improved cell yield and the maturation status of HLC. The bioprocess developed and optimized in this work offers high relevance not only for generation of more accurate in vitro models to study PH1 rare disease, but also towards the development of novel therapies. Acknowledgements & Funding: this study was funded by a grant from ERA-NET E-Rare 3 research program, JTC ERAdicatPH (E-Rare3/0002/2015) and Fundação para a Ciência e Tecnologia project MetaCardio (PTDC/BTM-SAL/32566/2017); iNOVA4Health – UIDB/04462/2020 and UIDP/04462/2020, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior, through national funds is acknowledged. P. V., J. I. A. were supported by FCT fellowships SFRH/BD/145767/2019, SFRH/BD/116780/2016 respectively. [1] P. Cochat, N. Engl. J. Med., vol. 369, no. 7, pp. 649–658, 2013. [2] B. Abecasis, J. Biotechnol., vol. 246, pp. 81–93, 2017. [3] I. Isidro, Biotechnol Bioeng, vol. 118, 3610–3617, 2021

    Increased efficacy and safety in the treatment of experimental liver cancer with a novel adenovirus-alphavirus hybrid vector

    Get PDF
    An improved viral vector for cancer gene therapy should be capable of infecting tumors with high efficiency, inducing specific and high-level expression of transgene in the tumor and selectively destroying tumor cells. In the design of such a vector to treat hepatocellular carcinoma, we took advantage of (a) the high infectivity of adenoviruses for hepatic cells, (b) the high level of protein expression and proapoptotic properties that characterize Semliki Forest virus (SFV) replicon, and (c) tumor selectivity provided by alpha-fetoprotein (AFP) promoter. We constructed a hybrid viral vector composed of a helper-dependent adenovirus containing an SFV replicon under the transcriptional control of AFP promoter and a transgene driven by SFV subgenomic promoter. Hybrid vectors containing murine interleukin-12 (mIL-12) genes or reporter gene LacZ showed very specific and high-level expression of transgenes in AFP-expressing hepatocellular carcinoma cells, both in vitro and in an in vivo hepatocellular carcinoma animal model. Infected hepatocellular carcinoma cells were selectively eliminated due to the induction of apoptosis by SFV replication. In a rat orthotopic liver tumor model, treatment of established tumors with a hybrid vector carrying mIL-12 gene resulted in strong antitumoral activity without accompanying toxicity. This new type of hybrid vectors may provide a potent and safe tool for cancer gene therapy

    Intensifying the manufacture of hiPSC therapy products through metabolic and process understanding

    Get PDF
    In vitro differentiation of human induced pluripotent stem cells into specific lineages such as cardiomyocytes (hPSC-CM) and hepatocytes (hPCS-Hep) is a crucial process to enable their application in cell therapy and drug discovery. Nevertheless, despite the remarkable efforts over the last decade towards the implementation of protocols for hPSC expansion and differentiation, there are some technological challenges remaining include the low scalability and differentiation yields. Additionally, generated cells are still immature, closely reminiscent of fetal/embryonic cells in what regards phenotype and function. In this study, we aim to overcome this hurdle by devising bioinspired and integrated strategies to improve the generation and functionality of these hiPSC-derivatives. We also applied robust multi-parametric techniques including proteomics, transcriptomics, metabolomics and fluxomics as complementary analytical tools to support bioprocess optimization and product characterization. We cultured hiPSC as 3D aggregates in stirred-tank bioreactors (STB) operated in perfusion and used a capacitance probe for in situ monitoring of cell growth/differentiation. After cell expansion, the hepatic differentiation step was integrated by addition of key soluble factors and controlling the dissolved oxygen concentration at various stages of the process to generate populations enriched for definitive endoderm, hepatocyte progenitors and mature hepatocytes. The analyses of hepatic markers expression throughout the stages of the differentiation confirmed that hepatocyte differentiation was improved in 3D spheroids when compared to 2D culture. Noteworthy, these hiPSC-HLC exhibited functional characteristics typical of hepatocytes (albumin production, glycogen storage and CYP450 activity). We also demonstrate the potential of dielectric spectroscopy to monitor cell expansion and hepatic differentiation in STB. For CM differentiation, we relied on the aggregation of hPSC-derived cardiac progenitors to establish a scalable differentiation protocol capable of generating highly pure CM aggregate cultures. We assessed if alteration of culture medium composition to mimic in vivo substrate usage during cardiac development improved further hPSC-CM maturation in vitro. Our results showed that shifting hPSC-CMs from glucose-containing to galactose- and fatty acid-containing medium promotes their fast maturation into adult-like CMs with higher oxidative metabolism, transcriptional signatures closer to those of adult ventricular tissue, higher myofibril density and alignment, improved calcium handling, enhanced contractility, and more physiological action potential kinetics. “-Omics” analyses showed that addition of galactose to culture medium and culturing the cells under perfusion improves total oxidative capacity of the cells and ameliorates fatty acid oxidation. This study demonstrated that metabolic shifts during differentiation/maturation of hPSC-CM are a cause, rather than a consequence, of the phenotypic and functional alterations observed. The metabolic-based strategy established herein holds technical and economic advantages over the existing protocols due to its scalability, simplicity and ease of application. Funding: This work was supported by FCT-funded projects NETDIAMOND (SAICTPAC/0047/2015), MetaCardio (Ref.032566) and FCT/ERA-Net (ERAdicatPH; Ref. E-Rare3/0002/2015). iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344) is also acknowledged

    Generation and characterization of human iPSC line generated from mesenchymal stem cells derived from adipose tissue

    Get PDF
    Abstract In this work, mesenchymal stem cells derived from adipose tissue (ADSCs) were used for the generation of the human-induced pluripotent stem cell line G15.AO. Cell reprogramming was performed using retroviral vectors containing the Yamanaka factors, and the generated G15.AO hiPSC line showed normal karyotype, silencing of the exogenous reprogramming factors, induction of the typical pluripotency-associated markers, alkaline phosphatase enzymatic activity, and in vivo and in vitro differentiation ability to the three germ layers

    Treatment of chronic viral hepatitis in woodchucks by prolonged intrahepatic expression of interleukin-12

    Get PDF
    Chronic hepatitis B is a major cause of liver-related death worldwide. Interleukin-12 (IL-12) induction accompanies viral clearance in chronic hepatitis B virus infection. Here, we tested the therapeutic potential of IL-12 gene therapy in woodchucks chronically infected with woodchuck hepatitis virus (WHV), an infection that closely resembles chronic hepatitis B. The woodchucks were treated by intrahepatic injection of a helper-dependent adenoviral vector encoding IL-12 under the control of a liver-specific RU486-responsive promoter. All woodchucks with viral loads below 10(10) viral genomes (vg)/ml showed a marked and sustained reduction of viremia that was accompanied by a reduction in hepatic WHV DNA, a loss of e antigen and surface antigen, and improved liver histology. In contrast, none of the woodchucks with higher viremia levels responded to therapy. The antiviral effect was associated with the induction of T-cell immunity against viral antigens and a reduction of hepatic expression of Foxp3 in the responsive animals. Studies were performed in vitro to elucidate the resistance to therapy in highly viremic woodchucks. These studies showed that lymphocytes from healthy woodchucks or from animals with low viremia levels produced gamma interferon (IFN-gamma) upon IL-12 stimulation, while lymphocytes from woodchucks with high viremia failed to upregulate IFN-gamma in response to IL-12. In conclusion, IL-12-based gene therapy is an efficient approach to treat chronic hepadnavirus infection in woodchucks with viral loads below 10(10) vg/ml. Interestingly, this therapy is able to break immunological tolerance to viral antigens in chronic WHV carriers

    Optimization of universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia

    Get PDF
    Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment

    Generation of NKX2.5(GFP) Reporter Human iPSCs and Differentiation Into Functional Cardiac Fibroblasts

    Get PDF
    Direct cardiac reprogramming has emerged as an interesting approach for the treatment and regeneration of damaged hearts through the direct conversion of fibroblasts into cardiomyocytes or cardiovascular progenitors. However, in studies with human cells, the lack of reporter fibroblasts has hindered the screening of factors and consequently, the development of robust direct cardiac reprogramming protocols.In this study, we have generated functional human NKX2.5(GFP) reporter cardiac fibroblasts. We first established a new NKX2.5(GFP) reporter human induced pluripotent stem cell (hiPSC) line using a CRISPR-Cas9-based knock-in approach in order to preserve function which could alter the biology of the cells. The reporter was found to faithfully track NKX2.5 expressing cells in differentiated NKX2.5(GFP) hiPSC and the potential of NKX2.5-GFP + cells to give rise to the expected cardiac lineages, including functional ventricular- and atrial-like cardiomyocytes, was demonstrated. Then NKX2.5(GFP) cardiac fibroblasts were obtained through directed differentiation, and these showed typical fibroblast-like morphology, a specific marker expression profile and, more importantly, functionality similar to patient-derived cardiac fibroblasts. The advantage of using this approach is that it offers an unlimited supply of cellular models for research in cardiac reprogramming, and since NKX2.5 is expressed not only in cardiomyocytes but also in cardiovascular precursors, the detection of both induced cell types would be possible. These reporter lines will be useful tools for human direct cardiac reprogramming research and progress in this field.This work was supported by PID 2019-107150RB-I00/AEI/ 10.13039/501100011033 to XC-V; by the “Ramón y Cajal” State Program, Ministry of Economy and Competitivenes

    Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies

    Get PDF
    The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours.We particularly acknowledge the Biobank of the University of Navarra for its collaboration. We thank Dr Edorta Martínez de Marigorta and Dr Francisco Palacios from Departamento de Química Orgánica I, Facultad de Farmacia, Universidad del Pais Vasco for 13C NMR determination and Angel Irigoyen Barrio and Dr Ana Romo Hualde, from University of Navarra, for HRMS determination. Dr. Irene de Miguel Turrullols from Small Molecule Discovery Platform, CIMA, University of Navarra is acknowledged for NMR data interpretation. This work was funded by grants from Instituto de Salud Carlos III (ISCIII) PI10/01691, PI13/01469, PI14/01867, PI10/2983, TRASCAN (EPICA), CIBERONC, cofinanciacion FEDER, RTICC RD12/0036/0068, Fundació La Marató de TV3 (20132130-31-32) and ‘Fundación Fuentes Dutor’. B.P. is supported by a Sara Borrell fellowship CD13/00340 and X.A. is a Marie Curie researcher under contract ‘LincMHeM-330598’.S
    corecore