5 research outputs found

    Dynamical Processing of Geophysical Signatures based on SPOT-5 Remote Sensing Imagery

    Get PDF
    An intelligent post-processing computational paradigm based on the use of dynamical filtering techniques modified to enhance the quality of reconstruction of geophysical signatures based on Spot-5 imagery is proposed. As a matter of particular study, a robust algorithm is reported for the analysis of the dynamic behavior of geophysical indexes extracted from the real-world remotely sensed scenes. The simulation results verify the efficiency of the approach as required for decision support in resources management

    Premessa

    No full text
    Fundamental vibrational transitions of fluorine fulminate (FCNO), fluorine isofulminate (FONC), fluorine cyanate (FOCN), fluorine isocyanate (FNCO) and their sulfur containing analogues have been determined from state-specific vibrational configuration interaction calculations (VCI) based on potential energy surfaces obtained from explicitly correlated coupled-cluster calculations, CCSD(T)-F12a. While the agreement with available experimental data was found to be excellent for the FNCO isomer, the data provided for all other isomers constitute theoretical predictions. Zapotitlán 2011 Elsevier B.V. All rights reserved

    Dynamic response of CoSb2O6 trirutile-type oxides in a CO2 atmosphere at low-temperatures

    No full text
    Experimental work on the synthesis of the CoSb2O6 oxide and its CO2 sensing properties is presented here. The oxide was synthesized by a microwave-assisted colloidal method in presence of ethylenediamine after calcination at 600 °C. This CoSb2O6 oxide crystallized in a tetragonal structure with cell parameters α= 4.6495 and c= 9.2763 Å, and space group P42/mnm. To prove its physical, chemical and sensing properties, the oxide was subjected to a series of tests: Raman spectroscopy, Scanning Electron Microscopy (SEM) and impedance (Z) measurements. Microstructures, like columns, bars and hollow hemispheres, were observed. For the CO2 sensing test, a thick film of CoSb2O6 was used, measuring the impedance variations on the presence of air/CO2 flows (0.100 sccm/0.100 sccm) using AC (alternating current) signals in the frequency-range 0.1-100 kHz and low relative temperatures (250 and 300 °C). The CO2 sensing results were quite good. © 2014 by the authors; licensee MDPI, Basel, Switzerland

    Dynamical processing of geophysical signatures based on spot-5 remote sensing imagery

    No full text
    Experimental work on the synthesis of the CoSb2O6 oxide and its CO2 sensing properties is presented here. The oxide was synthesized by a microwave-assisted colloidal method in presence of ethylenediamine after calcination at 600 °C. This CoSb2O6 oxide crystallized in a tetragonal structure with cell parameters ?= 4.6495 and c= 9.2763 Å, and space group P42/mnm. To prove its physical, chemical and sensing properties, the oxide was subjected to a series of tests: Raman spectroscopy, Scanning Electron Microscopy (SEM) and impedance (Z) measurements. Microstructures, like columns, bars and hollow hemispheres, were observed. For the CO2 sensing test, a thick film of CoSb2O6 was used, measuring the impedance variations on the presence of air/CO2 flows (0.100 sccm/0.100 sccm) using AC (alternating current) signals in the frequency-range 0.1-100 kHz and low relative temperatures (250 and 300 °C). The CO2 sensing results were quite good. " 2014 by the authors; licensee MDPI, Basel, Switzerland.",,,,,,"10.3390/s140915802",,,"http://hdl.handle.net/20.500.12104/40814","http://www.scopus.com/inward/record.url?eid=2-s2.0-84906871340&partnerID=40&md5=0ef48f570dd2426756a43bbd0f6ef83
    corecore