1,712 research outputs found
Alternative resonance energy transfer mechanisms in polymer light harvesting
Dendrimeric polymers are a subject of considerable interest, particularly for their applications in energy harvesting devices, but also in organic light-emitting diodes, photosensitizers, quantum logic devices and low-threshold lasers. The distinctive light harvesting characteristics of these materials owe their origin to the speed, efficiency and highly directed nature of the multi-step processes that deliver captured light energy to the core. Recently it has been shown how iterative calculations, based on a matrix representation of the connectivity and propensity for energy transfer between different chromophores, effectively model the time-dependent flux of energy within dendrimer materials. This paper reports the formulation and results of an extended approach, accommodating additional mechanisms by means of which excitations of energy higher than the incoming photons can be generated and propagated towards a trap. It is also shown how the structure of the dendrimer and the operation of a spectroscopic gradient affect this energy flow. These mechanisms explain experimental observations in which energy coupling of four photons or more is observed in large aryl ether azodendrimers, at relatively low levels of irradiance
Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches
Axion helioscopes search for solar axions by their conversion in x-rays in
the presence of high magnetic fields. The use of low background x-ray detectors
is an essential component contributing to the sensitivity of these searches. In
this work, we review the recent advances on Micromegas detectors used in the
CERN Axion Solar Telescope (CAST) and proposed for the future International
Axion Observatory (IAXO). The actual setup in CAST has achieved background
levels below 10 keV cm s, a factor 100 lower than
the first generation of Micromegas detectors. This reduction is based on active
and passive shielding techniques, the selection of radiopure materials, offline
discrimination techniques and the high granularity of the readout. We describe
in detail the background model of the detector, based on its operation at CAST
site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4
simulations. The best levels currently achieved at LSC are low than 10
keV cm s and show good prospects for the application of
this technology in IAXO. Finally, we present some ideas and results for
reducing the energy threshold of these detectors below 1 keV, using
high-transparent windows, autotrigger electronics and studying the cluster
shape at different energies. As a high flux of axion-like-particles is expected
in this energy range, a sub-keV threshold detector could enlarge the physics
case of axion helioscopes.Comment: Proceedings of 3rd International Conference on Technology and
Instrumentation in Particle Physics (TIPP 2014
Quantized Skyrmion Fields in 2+1 Dimensions
A fully quantized field theory is developped for the skyrmion topological
excitations of the O(3) symmetric CP-Nonlinear Sigma Model in 2+1D. The
method allows for the obtainment of arbitrary correlation functions of quantum
skyrmion fields. The two-point function is evaluated in three different
situations: a) the pure theory; b) the case when it is coupled to fermions
which are otherwise non-interacting and c) the case when an electromagnetic
interaction among the fermions is introduced. The quantum skyrmion mass is
explicitly obtained in each case from the large distance behavior of the
two-point function and the skyrmion statistics is inferred from an analysis of
the phase of this function. The ratio between the quantum and classical
skyrmion masses is obtained, confirming the tendency, observed in semiclassical
calculations, that quantum effects will decrease the skyrmion mass. A brief
discussion of asymptotic skyrmion states, based on the short distance behavior
of the two-point function, is also presented.Comment: Accepted for Physical Review
Prevalence of infection with high-risk human papillomavirus in women in Colombia
AbstractThe prevalence of human papillomavirus (HPV) infections in 2109 females inhabiting five cities of Colombia was determined. Of the 49.2% with an HPV infection, 59.8% were infected with more than one viral type. Species 7 (of the the genus Alphapapillomavirus) was associated with multiple infections. Analysis of the socio-demographic data revealed a statistically significant protective effect associated with the status of civil union (civil recognition of cohabitation without marriage), and indigenous ethnicity proved to be a risk factor for HPV infection. This is the first study comparing HPV infection among women from geographical regions of Colombia with different socio-cultural structures
Genetic evidence of two sibling species within the Contracoecum ogmorhini Johnson & Mawson 1941 complex (Nematoda; Anisakidae) from otariid seals in boreal and austral regions
Genetic variation of Contracaecum ogmorhini (sensu lato) populations from different otariid seals of the northern
and southern hemisphere was studied on the basis of 18 enzyme loci as well as preliminary sequence analysis of
the mitochondrial cyt b gene (260 bp). Samples were collected from Zalophus californianus in the boreal region
and from Arctocephalus pusillus pusillus, A. pusillus doriferus and A. australis from the austral region. Marked
genetic heterogeneity was found between C. ogmorhini (sensu lato) samples from the boreal and austral region,
respectively. Two loci (Mdh-2 and NADHdh) showed fixed differences and a further three loci (Iddh, Mdh-1 and
6Pgdh) were highly differentiated between boreal and austral samples. Their average genetic distance was DNei =
0.36 at isozyme level. At mitochondrial DNA level, an average proportion of nucleotide substitution of 3.7% was
observed. These findings support the existence of two distinct sibling species, for which the names C. ogmorhini
(sensu stricto) and C. margolisi n. sp., respectively, for the austral and boreal taxon, are proposed. A description
for C. margolisi n. sp. is provided. No diagnostic morphological characters have so far been detected; on the other hand, two enzyme loci, Mdh-2 and NADHdh, fully diagnostic between the two species, can be used for the routine identification of males, females and larval stages. Mirounga leonina was found to host C. ogmorhini (s.s.) inmixed infections with C. osculatum (s.l.) (of which C. ogmorhini (s.l.) was in the past considered to be a synonym)
and C. miroungae; no hybrid genotypes were found,confirming the reproductive isolation of these three anisakid species. The hosts and geographical range so far recorded for C. margolisi n. sp. and C. ogmorhini (s.s.) are given
An adverbial approach for the formal specification of topological constraints involving regions with broad boundaries
Topological integrity constraints control the topological properties of spatial objects and the validity of their topological relationships in spatial databases. These constraints can be specified by using formal languages such as the spatial extension of the Object Constraint Language (OCL). Spatial OCL allows the expression of topological constraints involving crisp spatial objects. However, topological constraints involving spatial objects with vague shapes (e.g., regions with broad boundaries) are not supported by this language. Shape vagueness requires using appropriate topological operators (e.g., strongly Disjoint, fairly Meet) to specify valid relations between these objects; otherwise, the constraints cannot be respected. This paper addresses the problem of the lack of terminology to express topological constraints involving regions with broad boundaries. We propose an extension of Spatial OCL based on a geometric model for objects with vague shapes and an adverbial approach for topological relations between regions with broad boundaries. This extension of Spatial OCL is then tested on an agricultural database
Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide
Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms, especially those building structures made of CaCO3. A large proportion of benthic marine calcifiers incorporate Mg2+ into their calcareous structures (i.e., Mg-calcite) which, in general, reduces mineral stability. The vulnerability of some marine calcifiers to ocean acidification is related to the solubility of their calcareous structures, but not all marine organisms conform to this because of sophisticated biological and physiological mechanisms to construct and maintain CaCO3 structures. Few studies have considered seawater saturation state with respect to species-specific mineralogy in evaluating the effect of ocean acidification on marine organisms. Here, a global dataset of skeletal mol % MgCO3 of benthic calcifiers and in situ environmental conditions (temperature, salinity, pressure, and [CO32-]) spanning a depth range of 0 m (subtidal/neritic) to 5500 m (abyssal) was assembled to calculate in situ seawater saturation states with respect to species-specific Mg-calcite mineral compositions (?Mg-x). Up to 20% of all studied calcifiers at depths <1200 m and approximately 90% of calcifiers at depths >1200 m currently experience seawater mineral undersaturation with respect to their skeletal mineral phase (?Mg-x<1). We conclude that as a result of predicted anthropogenic ocean acidification over the next 150 years, the predicted decrease in seawater mineral saturation, will expose approximately 50% (<1200 m) and 100% (>1200 m) of all studied calcifying species to seawater undersaturation. These observations underscore concerns over the ability of marine benthic calcifiers to continue to construct and maintain their calcareous structures under these conditions. We advocate that ocean acidification tipping points can only be understood by assessing species-specific responses, and because of different seawater ?Mg-x present in all marine ecosystems
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
- …