4,968 research outputs found

    Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit

    Get PDF
    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred

    A comparative study of WASP-67b and HAT-P-38b from WFC3 data

    Get PDF
    Atmospheric temperature and planetary gravity are thought to be the main parameters affecting cloud formation in giant exoplanet atmospheres. Recent attempts to understand cloud formation have explored wide regions of the equilibrium temperature-gravity parameter space. In this study, we instead compare the case of two giant planets with nearly identical equilibrium temperature (TeqT_\mathrm{eq} 1050K\sim 1050 \, \mathrm{K}) and gravity (g10ms1)g \sim 10 \, \mathrm{m \, s}^{-1}). During HSTHST Cycle 23, we collected WFC3/G141 observations of the two planets, WASP-67 b and HAT-P-38 b. HAT-P-38 b, with mass 0.42 MJ_\mathrm{J} and radius 1.4 RJR_\mathrm{J}, exhibits a relatively clear atmosphere with a clear detection of water. We refine the orbital period of this planet with new observations, obtaining P=4.6403294±0.0000055dP = 4.6403294 \pm 0.0000055 \, \mathrm{d}. WASP-67 b, with mass 0.27 MJ_\mathrm{J} and radius 0.83 RJR_\mathrm{J}, shows a more muted water absorption feature than that of HAT-P-38 b, indicating either a higher cloud deck in the atmosphere or a more metal-rich composition. The difference in the spectra supports the hypothesis that giant exoplanet atmospheres carry traces of their formation history. Future observations in the visible and mid-infrared are needed to probe the aerosol properties and constrain the evolutionary scenario of these planets.Comment: 16 pages, 17 figures, 8 tables, accepted for publication in The Astronomical Journa

    Creating and Probing Electron Whispering Gallery Modes in Graphene

    Get PDF
    Designing high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Previous approaches, e.g. the seminal nanometer-sized quantum corrals, depend on careful positioning of adatoms at clean surfaces. Here we demonstrate an entirely different approach, inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's unique properties, namely gate-tunable light-like carriers, we create Whispering Gallery Mode (WGM) resonators defined by circular pn-junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range, independently and in situ. The confined modes, revealed through characteristic resonances in the tunneling spectrum, originate from Klein scattering at pn junction boundaries. The WGM-type confinement and resonances are a new addition to the quantum electron-optics toolbox, paving the way to real-world electronic lenses and resonators

    Interaction Driven Quantum Hall Wedding cake-like Structures in Graphene Quantum Dots

    Get PDF
    Quantum-relativistic matter is ubiquitous in nature; however it is notoriously difficult to probe. The ease with which external electric and magnetic fields can be introduced in graphene opens a door to creating a table-top prototype of strongly confined relativistic matter. Here, through a detailed spectroscopic mapping, we provide a spatial visualization of the interplay between spatial and magnetic confinement in a circular graphene resonator. We directly observe the development of a multi-tiered "wedding cake"-like structure of concentric regions of compressible/incompressible quantum Hall states, a signature of electron interactions in the system. Solid-state experiments can therefore yield insights into the behaviour of quantum-relativistic matter under extreme conditions

    Infection of laboratory-colonized Anopheles darlingi mosquitoes by Plasmodium vivax.

    Get PDF
    Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector-pathogen interaction studies of this mosquito species. Here, we report the establishment of an An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on An. darlingi biology and study of An. darlingi-Plasmodium interactions

    Clinical actionability of comprehensive genomic profiling for management of rare or refractory cancers

    Get PDF
    Background. The frequency with which targeted tumor sequencing results will lead to implemented change in care is unclear. Prospective assessment of the feasibility and limitations of using genomic sequencing is critically important. Methods. A prospective clinical study was conducted on 100 patients with diverse-histology, rare, or poor-prognosis cancers to evaluate the clinical actionability of a Clinical Laboratory Improvement Amendments (CLIA)-certified, comprehensive genomic profiling assay (FoundationOne), using formalin-fixed, paraffin-embedded tumors. The primary objectives were to assess utility, feasibility, and limitations of genomic sequencing for genomically guided therapy or other clinical purpose in the setting of a multidisciplinary molecular tumor board. Results. Of the tumors from the 92 patients with sufficient tissue, 88 (96%) had at least one genomic alteration (average 3.6, range 0–10). Commonly altered pathways included p53 (46%), RAS/RAF/MAPK (rat sarcoma; rapidly accelerated fibrosarcoma; mitogen-activated protein kinase) (45%), receptor tyrosine kinases/ligand (44%), PI3K/AKT/mTOR (phosphatidylinositol-4,5-bisphosphate 3-kinase; protein kinase B; mammalian target of rapamycin) (35%), transcription factors/regulators (31%), and cell cycle regulators (30%). Many low frequency but potentially actionable alterations were identified in diverse histologies. Use of comprehensive profiling led to implementable clinical action in 35% of tumors with genomic alterations, including genomically guided therapy, diagnostic modification, and trigger for germline genetic testing. Conclusion. Use of targeted next-generation sequencing in the setting of an institutional molecular tumor board led to implementable clinical action in more than one third of patients with rare and poor-prognosis cancers. Major barriers to implementation of genomically guided therapy were clinical status of the patient and drug access. Early and serial sequencing in the clinical course and expanded access to genomically guided early-phase clinical trials and targeted agents may increase actionability. Implications for Practice: Identification of key factors that facilitate use of genomic tumor testing results and implementation of genomically guided therapy may lead to enhanced benefit for patients with rare or difficult to treat cancers. Clinical use of a targeted next-generation sequencing assay in the setting of an institutional molecular tumor board led to implementable clinical action in over one third of patients with rare and poor prognosis cancers. The major barriers to implementation of genomically guided therapy were clinical status of the patient and drug access both on trial and off label. Approaches to increase actionability include early and serial sequencing in the clinical course and expanded access to genomically guided early phase clinical trials and targeted agents
    corecore