3,584 research outputs found
Quantum fluctuations of classical skyrmions in quantum Hall Ferromagnets
In this article, we discuss the effect of the zero point quantum fluctuations
to improve the results of the minimal field theory which has been applied to
study %SMG the skyrmions in the quantum Hall systems. Our calculation which is
based on the semiclassical treatment of the quantum fluctuations, shows that
the one-loop quantum correction provides more accurate results for the minimal
field theory.Comment: A few errors are corrected. Accepted for publication in Rapid
Communication, Phys. Rev.
Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces
This paper is the third in a sequel to develop a super-analogue of the
classical Selberg trace formula, the Selberg supertrace formula. It deals with
bordered super Riemann surfaces. The theory of bordered super Riemann surfaces
is outlined, and the corresponding Selberg supertrace formula is developed. The
analytic properties of the Selberg super zeta-functions on bordered super
Riemann surfaces are discussed, and super-determinants of Dirac-Laplace
operators on bordered super Riemann surfaces are calculated in terms of Selberg
super zeta-functions.Comment: 43 pages, amste
Quantized Skyrmion Fields in 2+1 Dimensions
A fully quantized field theory is developped for the skyrmion topological
excitations of the O(3) symmetric CP-Nonlinear Sigma Model in 2+1D. The
method allows for the obtainment of arbitrary correlation functions of quantum
skyrmion fields. The two-point function is evaluated in three different
situations: a) the pure theory; b) the case when it is coupled to fermions
which are otherwise non-interacting and c) the case when an electromagnetic
interaction among the fermions is introduced. The quantum skyrmion mass is
explicitly obtained in each case from the large distance behavior of the
two-point function and the skyrmion statistics is inferred from an analysis of
the phase of this function. The ratio between the quantum and classical
skyrmion masses is obtained, confirming the tendency, observed in semiclassical
calculations, that quantum effects will decrease the skyrmion mass. A brief
discussion of asymptotic skyrmion states, based on the short distance behavior
of the two-point function, is also presented.Comment: Accepted for Physical Review
Statistical properties of power-law random banded unitary matrices in the delocalization-localization transition regime
Power-law random banded unitary matrices (PRBUM), whose matrix elements decay
in a power-law fashion, were recently proposed to model the critical statistics
of the Floquet eigenstates of periodically driven quantum systems. In this
work, we numerically study in detail the statistical properties of PRBUM
ensembles in the delocalization-localization transition regime. In particular,
implications of the delocalization-localization transition for the fractal
dimension of the eigenvectors, for the distribution function of the eigenvector
components, and for the nearest neighbor spacing statistics of the eigenphases
are examined. On the one hand, our results further indicate that a PRBUM
ensemble can serve as a unitary analog of the power-law random Hermitian matrix
model for Anderson transition. On the other hand, some statistical features
unseen before are found from PRBUM. For example, the dependence of the fractal
dimension of the eigenvectors of PRBUM upon one ensemble parameter displays
features that are quite different from that for the power-law random Hermitian
matrix model. Furthermore, in the time-reversal symmetric case the nearest
neighbor spacing distribution of PRBUM eigenphases is found to obey a
semi-Poisson distribution for a broad range, but display an anomalous level
repulsion in the absence of time-reversal symmetry.Comment: 10 pages + 13 fig
Orbital Ordering in Paramagnetic LaMnO3 and KCuF3
{\it Ab-initio} studies of the stability of orbital ordering, its coupling to
magnetic structure and its possible origins (electron-phonon and/or
electron-electron interactions) are reported for two perovskite systems,
LaMnO and KCuF. We present a new Average Spin State (ASS) calculational
scheme that allowed us to treat a paramagnetic state. Using this scheme, we
succesfully described the experimental magnetic/orbital phase diagram of both
LaMnO and KCuF in crystal structures when the Jahn-Teller distortions
are neglected. Hence, we conclude that the orbital ordering in both compounds
is purely electronic in origin.Comment: 10 pages, 5 figure
Direct and sequential radiative three-body reaction rates at low temperatures
We investigate the low-temperature reaction rates for radiative capture
processes of three particles. We compare direct and sequential capture
mechanisms and rates using realistic phenomenological parametrizations of the
corresponding photodissociation cross sections.Energy conservation prohibits
sequential capture for energies smaller than that of the intermediate two-body
structure. A finite width or a finite temperature allows this capture
mechanism. We study generic effects of positions and widths of two- and
three-body resonances for very low temperatures. We focus on nuclear reactions
relevant for astrophysics, and we illustrate with realistic estimates for the
-- and -- radiative capture
processes. The direct capture mechanism leads to reaction rates which for
temperatures smaller than 0.1 GK can be several orders of magnitude larger than
those of the NACRE compilation.Comment: To be published in European Physical Journal
Vitamins C and E downregulate vascular VEGF and VEGFR-2 expression in apolipoprotein-E-deficient mice
Anti-angiogenic therapy reduces both plaque growth and intimal neovascularization in apolipoprotein-E-deficient mice (apoE-/-). Vascular endothelial growth factor (VEGF) has been suggested as playing a role in the development of atherosclerosis. We examined the hypothesis that VEGF and VEGF receptor-2 (VEGFR-2) expression is upregulated in apoE-/- and, since it could be driven by oxidative stress, tested whether dietary supplementation with vitamins C and E could downregulate it.Two-month-old apoE-/- received vitamin C combined with alpha- or beta-tocopherol for 4 weeks. Aortic VEGF and VEGFR-2 expression were measured by RT-qPCR and western blot.ApoE-/- showed significantly higher expression of aortic VEGF and VEGFR-2 mRNA (P<0.001) and protein (P<0.001) than wild-type mice, as well as increased plasma VEGF (P<0.001). Vitamin C and alpha-tocopherol significantly reduced aortic VEGF and VEGFR-2 expression in apoE-/- (P<0.001), circulating VEGF (P<0.01) and plasma lipid peroxidation (P<0.01). apoE-/- receiving vitamin C and beta-tocopherol showed diminished lipid peroxidation and VEGFR-2, but only partial reduction of VEGF expression. These data demonstrate that augmented VEGF and VEGFR-2 expression in apoE-/- vasculature can be downregulated by vitamins C and E, at least partially through oxidative stress reduction. This novel mechanism could contribute to explaining the beneficial effects of antioxidant vitamins in experimental atherosclerosis
Colloquium: Mechanical formalisms for tissue dynamics
The understanding of morphogenesis in living organisms has been renewed by
tremendous progressin experimental techniques that provide access to
cell-scale, quantitative information both on theshapes of cells within tissues
and on the genes being expressed. This information suggests that
ourunderstanding of the respective contributions of gene expression and
mechanics, and of their crucialentanglement, will soon leap forward.
Biomechanics increasingly benefits from models, which assistthe design and
interpretation of experiments, point out the main ingredients and assumptions,
andultimately lead to predictions. The newly accessible local information thus
calls for a reflectionon how to select suitable classes of mechanical models.
We review both mechanical ingredientssuggested by the current knowledge of
tissue behaviour, and modelling methods that can helpgenerate a rheological
diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and
tissue scale ("inter-cell") contributions. We recall the mathematical framework
developpedfor continuum materials and explain how to transform a constitutive
equation into a set of partialdifferential equations amenable to numerical
resolution. We show that when plastic behaviour isrelevant, the dissipation
function formalism appears appropriate to generate constitutive equations;its
variational nature facilitates numerical implementation, and we discuss
adaptations needed in thecase of large deformations. The present article
gathers theoretical methods that can readily enhancethe significance of the
data to be extracted from recent or future high throughput
biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few
corrections to the published version, all in Appendix D.2 devoted to large
deformation
High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic breast cancer
For patients with metastatic breast cancer, we previously described that increased EZH2 expression levels were associated with an adverse outcome to tamoxifen therapy. Main objective of the p
Spin-Charge Separation in the Model: Magnetic and Transport Anomalies
A real spin-charge separation scheme is found based on a saddle-point state
of the model. In the one-dimensional (1D) case, such a saddle-point
reproduces the correct asymptotic correlations at the strong-coupling
fixed-point of the model. In the two-dimensional (2D) case, the transverse
gauge field confining spinon and holon is shown to be gapped at {\em finite
doping} so that a spin-charge deconfinement is obtained for its first time in
2D. The gap in the gauge fluctuation disappears at half-filling limit, where a
long-range antiferromagnetic order is recovered at zero temperature and spinons
become confined. The most interesting features of spin dynamics and transport
are exhibited at finite doping where exotic {\em residual} couplings between
spin and charge degrees of freedom lead to systematic anomalies with regard to
a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic
fluctuation with a small, doping-dependent energy scale is found, which is
characterized in momentum space by a Gaussian peak at (, ) with
a doping-dependent width (, is the doping
concentration). This commensurate magnetic fluctuation contributes a
non-Korringa behavior for the NMR spin-lattice relaxation rate. There also
exits a characteristic temperature scale below which a pseudogap behavior
appears in the spin dynamics. Furthermore, an incommensurate magnetic
fluctuation is also obtained at a {\em finite} energy regime. In transport, a
strong short-range phase interference leads to an effective holon Lagrangian
which can give rise to a series of interesting phenomena including linear-
resistivity and Hall-angle. We discuss the striking similarities of these
theoretical features with those found in the high- cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request;
minor revisions in the text and references have been made; To be published in
July 1 issue of Phys. Rev. B52, (1995
- …
