14 research outputs found

    RAB7 GTPases as coordinators of plant endomembrane traffic

    Get PDF
    The ras gene from rat brain (RAB) family of small GTPases is highly conserved among eukaryotes and regulates endomembrane trafficking pathways. RAB7, in particular, has been linked to various processes involved in regulating endocytic and autophagic pathways. Plants have several copies of RAB7 proteins that reflect the intricacy of their endomembrane transport systems. RAB7 activity regulates different pathways of endomembrane trafficking in plants: (1) endocytic traffic to the vacuole; (2) biosynthetic traffic to the vacuole; and (3) recycling from the late endosome to the secretory pathway. During certain developmental and stress related processes another pathway becomes activated (4) autophagic trafficking towards the vacuole that is also regulated by RAB7. RAB7s carry out these functions by interacting with various effector proteins. Current research reveals many unexplored RAB7 functions in connection with stress responses. Thus, this review describes a comprehensive summary of current knowledge of plant RAB7’s functions, discusses unresolved challenges, and recommends prospective future research directions

    Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth.

    Get PDF
    The ancient morphoregulatory hormone auxin dynamically realigns dedicated cellular processes that shape plant growth under prevailing environmental conditions. However, the nature of the stress-responsive signal altering auxin homeostasis remains elusive. Here we establish that the evolutionarily conserved plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) controls adaptive growth by dual transcriptional and post-translational regulatory inputs that modulate auxin levels and distribution patterns in response to stress. We demonstrate that in vivo accumulation or exogenous application of MEcPP alters the expression of two auxin reporters, DR5:GFP and DII-VENUS, and reduces the abundance of the auxin-efflux carrier PIN-FORMED1 (PIN1) at the plasma membrane. However, pharmacological intervention with clathrin-mediated endocytosis blocks the PIN1 reduction. This study provides insight into the interplay between these two indispensable signaling metabolites by establishing the mode of MEcPP action in altering auxin homeostasis, and as such, positioning plastidial function as the primary driver of adaptive growth

    IL-17RA-signaling modulates CD8+ T Cell survival and exhaustion during trypanosoma cruzi infection

    Get PDF
    The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-Apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi.Fil: Tosello Boari, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Araujo Furlan, Cintia Liliana. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Fiocca Vernengo, Facundo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Rodriguez, Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Ramello, María Cecilia. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Amezcua Vesely, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Gorosito Serran, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Nuñez, Nicolás G.. Institute Curie; Francia. Institut National de la Santé et de la Recherche Médicale; FranciaFil: Richer, Wilfrid. Institut National de la Santé et de la Recherche Médicale; Francia. Institute Curie; FranciaFil: Piaggio, Eliane. Institut National de la Santé et de la Recherche Médicale; Francia. Institute Curie; FranciaFil: Montes, Carolina Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; ArgentinaFil: Gruppi, Adriana. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Acosta Rodriguez, Eva Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Bioquímica Clínica; Argentin

    Evaluación de Simulaciones Numéricas Bi y Tridimensionales del Flujo en una Confluencia Fluvial

    Get PDF
    Las confluencias son ambientes complejos presentes en los sistemas fluviales debido a que la convergencia de dos o más flujos produce complejos patrones hidrodinámicos. Una característica hidrodinámica relevante es la formación de una interfase de mezcla entre los flujos convergentes y el desarrollo de estructuras de flujo coherentes de gran escala dentro de esta interfaz. Los procesos hidrodinámicos que se desarrollan en las interfaces de mezcla están gobernados por diferentes parámetros geométricos y del flujo. En este trabajo se presenta la evaluación numérica del comportamiento hidrodinámico de una confluencia de dos flujos paralelos. Para ello se han utilizado, en el código libre y abierto OpenFOAM(R) (Open Field Operation and Manipulation), modelos numéricos en dos y tres dimensiones para representar flujos turbulentos a los fines de evaluar las bondades y limitaciones de cada uno de ellos. Estos modelos fueron validados utilizando datos experimentales específicamente registrados para este estudio en un canal de sección rectangular a fondo rígido en las instalaciones del Instituto de Mecánica de los Fluidos e Ingeniería Ambiental (IMFIA), Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay. En la etapa de validación incluida en este trabajo se compararon los campos medios de velocidades observados en la instalación experimental y en las simulaciones numéricas. Los modelos numéricos computacionales utilizados para simular la confluencia de flujos paralelos reproducen cualitativamente los principales procesos físicos observados durante los experimentos, logrando representar las zonas de estancamiento, de aceleración del flujo, y la formación y desprendimiento de vórtices. Trabajos futuros prevén la aplicación del modelo numérico finalmente seleccionado para representar el flujo para distintos rangos de condiciones geométricas (diámetro de la nariz de la confluencia y ángulo de aproximación) y de flujo (relación de caudales y momentos de flujo).Fil: Pozzi Piacenza, Cecilia Elena. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Estudios Tecnológicos Sobre el Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Herrero, Horacio Sebastian Julian. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Estudios Tecnológicos Sobre el Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ragessi, Ivan Matias. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Estudios Tecnológicos Sobre el Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Furlan, Paloma. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Estudios Tecnológicos Sobre el Agua; ArgentinaFil: Garcia Rodriguez, Carlos Marcelo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Estudios Tecnológicos Sobre el Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Distinct mechanisms orchestrate the contra-polarity of IRK and KOIN, two LRR-receptor-kinases controlling root cell division.

    No full text
    In plants, cell polarity plays key roles in coordinating developmental processes. Despite the characterization of several polarly localized plasma membrane proteins, the mechanisms connecting protein dynamics with cellular functions often remain unclear. Here, we introduce a polarized receptor, KOIN, that restricts cell divisions in the Arabidopsis root meristem. In the endodermis, KOIN polarity is opposite to IRK, a receptor that represses endodermal cell divisions. Their contra-polar localization facilitates dissection of polarity mechanisms and the links between polarity and function. We find that IRK and KOIN are recognized, sorted, and secreted through distinct pathways. IRK extracellular domains determine its polarity and partially rescue the mutant phenotype, whereas KOIN's extracellular domains are insufficient for polar sorting and function. Endodermal expression of an IRK/KOIN chimera generates non-cell-autonomous misregulation of root cell divisions that impacts patterning. Altogether, we reveal two contrasting mechanisms determining these receptors' polarity and link their polarity to cell divisions in root tissue patterning

    CD39 expression defines cell exhaustion in tumor-infiltrating CD8+ T cells

    Get PDF
    The ability of CD8+ T lymphocytes to eliminate tumors is limited by their ability to engender an immunosuppressive microenvironment. Here we describe a subset of tumor-infiltrating CD8+ T cells marked by high expression of the immunosuppressive ATP ectonucleotidase CD39. The frequency of CD39highCD8+ T cells increased with tumor growth but was absent in lymphoid organs. Tumor-infiltrating CD8+ T cells with high CD39 expression exhibited features of exhaustion, such as reduced production of TNF and IL2 and expression of coinhibitory receptors. Exhausted CD39+CD8+ T cells from mice hydrolyzed extracellular ATP, confirming that CD39 is enzymatically active. Furthermore, exhausted CD39+CD8+ T cells inhibited IFNg production by responderCD8+ T cells. In specimens from breast cancer and melanoma patients, CD39+CD8+ T cells were present within tumors and invaded or metastatic lymph nodes, but were barely detectable within noninvaded lymph nodes and absent in peripheral blood. These cells exhibited an exhausted phenotype with impaired production of IFNg, TNF, IL2, and high expression of coinhibitory receptors. Although T-cell receptor engagement was sufficient to induceCD39 on human CD8+ T cells, exposure to IL6 and IL27 promoted CD39 expression on stimulated CD8+ T cells from human or murine sources. Our findings show how the tumor microenvironment drives the acquisition of CD39 as an immune regulatory molecule onCD8+ T cells, withimplications for defining abiomarker of T-cell dysfunction and a target for immunotherapeutic intervention. Significance: The tumor microenvironment elicits a subset of functionally exhausted CD8+ T cells by creating conditions that induce cell surface expression of CD39, an immunosuppressive molecule that can be therapeutically targeted to restore effector T-cell function.Fil: Canale, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Ramello, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Nuñez, Nicolás. Institute Curie. U-932 Immunity And Cancer; FranciaFil: Araujo Furlan, Cintia Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Bossio, Sabrina Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Gorosito Serran, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Tosello Boari, Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: del Castillo, Andrés. Hospital Rawson; ArgentinaFil: Ledesma, Marta. Hospital Rawson; ArgentinaFil: Sedlik, Christine. Institute Curie. U-932 Immunity And Cancer; FranciaFil: Piaggio, Eliane. Institute Curie. U-932 Immunity And Cancer; FranciaFil: Gruppi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Acosta Rodriguez, Eva Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Montes, Carolina Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin
    corecore