4,207 research outputs found

    A Multi-modal Approach to Fine-grained Opinion Mining on Video Reviews

    Get PDF
    Despite the recent advances in opinion mining for written reviews, few works have tackled the problem on other sources of reviews. In light of this issue, we propose a multi-modal approach for mining fine-grained opinions from video reviews that is able to determine the aspects of the item under review that are being discussed and the sentiment orientation towards them. Our approach works at the sentence level without the need for time annotations and uses features derived from the audio, video and language transcriptions of its contents. We evaluate our approach on two datasets and show that leveraging the video and audio modalities consistently provides increased performance over text-only baselines, providing evidence these extra modalities are key in better understanding video reviews.Comment: Second Grand Challenge and Workshop on Multimodal Language ACL 202

    Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    Get PDF
    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation

    The Band Excitation Method in Scanning Probe Microscopy for Rapid Mapping of Energy Dissipation on the Nanoscale

    Full text link
    Mapping energy transformation pathways and dissipation on the nanoscale and understanding the role of local structure on dissipative behavior is a challenge for imaging in areas ranging from electronics and information technologies to efficient energy production. Here we develop a novel Scanning Probe Microscopy (SPM) technique in which the cantilever is excited and the response is recorded over a band of frequencies simultaneously rather than at a single frequency as in conventional SPMs. This band excitation (BE) SPM allows very rapid acquisition of the full frequency response at each point (i.e. transfer function) in an image and in particular enables the direct measurement of energy dissipation through the determination of the Q-factor of the cantilever-sample system. The BE method is demonstrated for force-distance and voltage spectroscopies and for magnetic dissipation imaging with sensitivity close to the thermomechanical limit. The applicability of BE for various SPMs is analyzed, and the method is expected to be universally applicable to all ambient and liquid SPMs.Comment: 32 pages, 9 figures, accepted for publication in Nanotechnolog

    Nanoscale polarization manipulation and imaging in ferroelectric Langmuir-Blodgett polymer films

    Get PDF
    The behavior of ferroelectricity at the nanoscale is the focus of increasing research activity because of intense interest in the fundamental nature of spontaneous order in condensed-matter systems and because of the many practical applications of ferroelectric thin films to, for example, electromechanical transducers, infrared imaging sensors, and nonvolatile random-access memories. Ferroelectricity, in analogy with its namesake ferromagnetism, is the property of some crystalline systems to maintain a permanent, but reversible, electrical polarization in the absence of an external electric field. The imaging and dynamics of the piezoelectric response at the nanoscale is perhaps the most direct means of probing polarization, as has been demonstrated in a number of thin films and nanostructures . Here we report the use of piezoresponse force microscopy (PFM) and switching spectroscopy PFM (SSPFM) to image the ferroelectric properties, domain structure, and polarization switching of ultrathin ferroelectric Langmuir-Blodgett films of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymers. PFM imaging of P(VDF-TrFE) thin films reveals ferroelectric domain sizes on the order of 25-50 nm and an imaging resolution below 5 nm. The feature sizes in topography and PFM images are comparable and the boundaries of uniformly polarized regions coincide with topographic features. Arbitrary polarization patterns could be repeatedly written and erased, with writing resolution limited by the grain size. Hysteresis loops from individual domains show clear coercive voltage, but are not well saturated at +/-10 V amplitude.Comment: 11 pages, 3 figure

    Efficient non-degenerate two-photon excitation for fluorescence microscopy

    Full text link
    Non-degenerate two-photon excitation (ND-TPE) has been explored in two-photon excitation microscopy. However, a systematic study of the efficiency of ND-TPE to guide the selection of fluorophore excitation wavelengths is missing. We measured the relative non-degenerate two-photon absorption cross-section (ND-TPACS) of several commonly used fluorophores (two fluorescent proteins and three small-molecule dyes) and generated 2-dimensional ND-TPACS spectra. We observed that the shape of a ND-TPACS spectrum follows that of the corresponding degenerate two-photon absorption cross-section (D-TPACS) spectrum, but is higher in magnitude. We found that the observed enhancements are higher than theoretical predictions.Published versio

    Estimating percentages of fusarium-damaged kernels in hard wheat by near-infrared hyperspectral imaging

    Get PDF
    Fusarium head blight (FHB) is among the most common fungal diseases affecting wheat, resulting in decreased yield, low-density kernels, and production of the mycotoxin deoxynivalenol, a compound toxic to humans and livestock. Human visual analysis of representative wheat samples has been the traditional method for FHB assessment in both official inspection and plant breeding operations. While not requiring specialized equipment, visual analysis is dependent on a trained and consistent workforce, such that in the absence of these aspects, biases may arise among inspectors and evaluation dates. This research was intended to avoid such pitfalls by using longer wavelength radiation than the visible using hyperspectral imaging (HSI) on individual kernels. Linear discriminant analysis models to differentiate between sound and scab-damaged kernels were developed based on mean of reflectance values of the interior pixels of each kernel at four wavelengths (1100, 1197, 1308, and 1394 nm). Other input variables were examined, including kernel morphological properties and histogram features from the pixel responses of selected wavelengths of each kernel. The results indicate the strong potential of HSI in estimating fusarium damage. However, improvement in aligning this procedure to visual analysis is hampered by the inherent level of subjectivity in visual analysis

    Identification of a Core Amino Acid Motif within the α Subunit of GABAARs that Promotes Inhibitory Synaptogenesis and Resilience to Seizures

    Get PDF
    The fidelity of inhibitory neurotransmission is dependent on the accumulation of γ-aminobutyric acid type A receptors (GABAARs) at the appropriate synaptic sites. Synaptic GABAARs are constructed from α(1-3), β(1-3), and γ2 subunits, and neurons can target these subtypes to specific synapses. Here, we identify a 15-amino acid inhibitory synapse targeting motif (ISTM) within the α2 subunit that promotes the association between GABAARs and the inhibitory scaffold proteins collybistin and gephyrin. Using mice in which the ISTM has been introduced into the α1 subunit (Gabra1-2 mice), we show that the ISTM is critical for axo-axonic synapse formation, the efficacy of GABAergic neurotransmission, and seizure sensitivity. The Gabra1-2 mutation rescues seizure-induced lethality in Gabra2-1 mice, which lack axo-axonic synapses due to the deletion of the ISTM from the α2 subunit. Taken together, our data demonstrate that the ISTM plays a critical role in promoting inhibitory synapse formation, both in the axonic and somatodendritic compartments

    Accurate PCR detection of influenza A/B and respiratory syncytial viruses by use of Cepheid Xpert Flu+RSV Xpress Assay in point-of-care settings: Comparison to Prodesse ProFlu+

    Get PDF
    ABSTRACT The Xpert Flu+RSV Xpress Assay is a fast, automated in vitro diagnostic test for qualitative detection and differentiation of influenza A and B viruses and respiratory syncytial virus (RSV) performed on the Cepheid GeneXpert Xpress System. The objective of this study was to establish performance characteristics of the Xpert Flu+RSV Xpress Assay compared to those of the Prodesse ProFlu+ real-time reverse transcription-PCR (RT-PCR) assay (ProFlu+) for the detection of influenza A and B viruses as well as RSV in a Clinical Laboratory Improvement Amendments (CLIA)-waived (CW) setting. Overall, the assay, using fresh and frozen nasopharyngeal (NP) swabs, demonstrated high concordance with results of the ProFlu+ assay in the combined CW and non-CW settings with positive percent agreements (PPA) (100%, 100%, and 97.1%) and negative percent agreements (NPA) (95.2%, 99.5%, and 99.6%) for influenza A and B viruses and RSV, respectively. In conclusion, this multicenter study using the Cepheid Xpert Flu+RSV Xpress Assay demonstrated high sensitivities and specificities for influenza A and B viruses and RSV in ∼60 min for use at the point-of-care in the CW setting. </jats:p

    Genomic and systems evolution in Vibrionaceae species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family <it>Vibrionaceae </it>is found in the <it>Gammaproteobacteria </it>and is abundant in aquatic environments. Taxa from the family <it>Vibrionaceae </it>are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE).</p> <p>Results</p> <p>Here we present the results of a detailed comparison of the genomes of eleven <it>Vibrionaceae </it>strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%–50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven <it>Vibrionaceae </it>strains, with 1–11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and pathogenesis mechanisms as well as in the fundamental life cycle of <it>Vibrionaceae </it>species.</p> <p>Conclusion</p> <p>Our results provide evidence of genome plasticity and rapid evolution within the family <it>Vibrionaceae</it>. The comparisons point to sources of genomic variation and candidates for lineage-specific adaptations of each <it>Vibrionaceae </it>pathogen or nonpathogen strain. Such lineage specific expansions could reveal components in bacterial systems that, by their enhanced genetic variability, can be tied to responses to environmental challenges, interesting phenotypes, or adaptive pathogenic responses to host challenges.</p
    corecore