3,018 research outputs found

    Psychosocial Predictors of Metabolic Syndrome among Latino Groups in the Multi-Ethnic Study of Atherosclerosis (MESA).

    Get PDF
    ObjectiveWe sought to determine the contribution of psychological variables to risk for metabolic syndrome (MetS) among Latinos enrolled in the Multi-Ethnic Study of Atherosclerosis (MESA), and to investigate whether social support moderates these associations, and whether inflammatory markers mediate the association between psychological variables and MetS.Research design and methodsCross-sectional analyses at study baseline were conducted with a national Latino cohort (n = 1,388) that included Mexican Americans, Dominican Americans, Puerto Rican Americans and Central/South Americans. Hierarchical logistic regression analyses were conducted to test the effects of psychosocial variables (chronic stress, depressive symptoms, and social support) on MetS. In addition, separate subgroup-specific models, controlling for nationality, age, gender, socioeconomic position, language spoken at home, exercise, smoking and drinking status, and testing for the effects of chronic stress, depressive symptoms and inflammation (IL-6, CRP, fibrinogen) in predicting risk for MetS were conducted.ResultsIn the overall sample, high chronic stress independently predicted risk for MetS, however this association was found to be significant only in Mexican Americans and Puerto Rican Americans. Social support did not moderate the associations between chronic stress and MetS for any group. Chronic stress was not associated with inflammatory markers in either the overall sample or in each group.ConclusionsOur results suggest a differential contribution of chronic stress to the prevalence of MetS by national groups

    Compactness in L1 of a vector measure

    Full text link
    We study compactness and related topological properties in the space L1(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-integrability is explored. A natural norming subset of the dual unit ball of L1(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration operator is analyzed in relation with the positive Schur property of L1(m). The strong weaklycompact generation of L1(m) is discussed as well.This research was partially supported by MINECO and FEDER under projects MTM2011-23164 (J. M. Calabuig), MTM2011-25377 (S. Lajara and J. Rodriguez) and MTM2012-36740-c02-02 (E. A. Sanchez-Perez).Calabuig Rodriguez, JM.; Lajara, S.; Rodríguez Ruiz, J.; Sánchez Pérez, EA. (2014). Compactness in L1 of a vector measure. Studia Mathematica. 225(3):259-282. https://doi.org/10.4064/sm225-3-6S259282225

    Understanding the kinetic behavior of a Mo-V-Te-Nb mixed oxide in the oxydehydrogenation of ethane

    Full text link
    Two kinetic models based on Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms were developed to describe the oxydehydrogenation of ethane to yield ethylene over a Mo-V-Te-Nb catalyst. Obtained in a lab-scale fixed-bed reactor, experimental data at the steady-state were used to estimate the kinetic models parameters via a nonisothermal regression. Experiments were performed using an ethane, oxygen and nitrogen mixture as feedstock, spanning temperatures from 673 to 753 K, inlet partial pressures of oxygen and ethane between 5.0 and 22.0 kPa, and space-time from 10 to 70 g(cat) h(molethane)- (1). Ethylene, CO and CO2 were the only detected products, the selectivity for ethylene ranged from 76% to 96% for an ethane conversion interval 4-85%. A series of tests feeding ethylene instead of ethane were also performed at 713 K, varying inlet partial pressures and space-time in the same ranges as was done for ethane. Ethylene conversion was relatively low, 3-14%, the dominant product being CO with CO/CO2 ratios from 0.73 to 0.79. The LH mechanism was found to represent better the experimental data. The oxydehydrogenation of ethane was the reaction with the lowest activation energy, 108-115 kJ mol (1). Except for the conversion of ethane into CO2, deep oxidations were detected as very energetically demanding steps, 156-193 kJ mol (1). Competitive adsorption between reagents and products occurred in the two mechanisms particularly at relatively high reaction severity, water re-adsorption being weaker in comparison with COx re-adsorption. (C) 2014 Elsevier Ltd. All rights reserved.This work was financially supported by the Instituto Mexicano del Petroleo.Quintana-Solorzano, R.; Barragan-Rodriguez, G.; Armendariz-Herrera, H.; LĂłpez Nieto, JM.; Valente, JS. (2014). Understanding the kinetic behavior of a Mo-V-Te-Nb mixed oxide in the oxydehydrogenation of ethane. Fuel. 138:15-26. doi:10.1016/j.fuel.2014.07.051152613

    Relatively low-temperature processing and its impact on device performance and reliability

    Get PDF
    Non-silicon, large-area/flexible electronics for the internet of things (IoT) has acquired substantial attention in recent years. Key electron devices to enable this technology include metal-oxide-semiconductor field effect transistors (MOSFETs), where ultra-thin and/or low-dimensional (i.e., 2D to a few layers) semiconductor materials may be required, like those found in thin-film transistors (TFTs) and transition metal dichalcogenide (TMD) FETs [1,2]. Whether TFT or TMDFET, a relatively low-temperature process commensurate with large-area/flex applications to enable large (i.e., greater than 300 mm) and/or flexible substrate fabrication is required. Furthermore, TMD materials may be implemented as the channel semiconductor to function as an ultra-thin body to mitigate short channel effects and extend further scaling as the future progresses in CMOS scaling. In addition, the gate dielectric insulator is another vital component of any MOSFET that requires investigation as part of the MOS stack in these types of transistors. Lastly, semiconductor materials mentioned herein do not have a universally accepted way to introduce dopants to form sources and drains. Thus, metal-semiconductor contacts are employed where the interface region of the contact plays a critical role in determining the conductivity/resistivity of the contact. Moreover, how the metal-semiconductor interface are formed also impacts the quality of the contact. Therefore, exploration of low-temperature processing, interfaces, and their impact on device performance and reliability will be critical to eventual implementation in future technologies. To ascertain the impact of low-temperature fabrication and critical interfaces, several process approaches and electrical characterization methods were employed [1-6]. In one case, for a TMD FET contact study, an oxygen plasma exposure in the contact region on MoS2 (a TMD material) is done prior to titanium deposition. The results demonstrate that contaminants and photoresist residue that still reside after development can noticeably impact electrical performance (Fig. 1). The O2 plasma removes the residue present at the surface of MoS2 without the use of a high temperature anneal, and subsequently improves the device performance significantly (Fig. 1) [1]. In another case, for a MOS-based TFT study, an investigation of low-temperature (\u3e 115°C) deposited zinc-based semiconductors was executed (Fig. 2). For ZnO and IGZO, saturation mobilities of 14.4 and 8.4 cm2/V-s, along with threshold voltages of 2.2 V and 2.0 V were obtained, respectively, demonstrating robust devices that also have an on/off ratio \u3e 108, with IOFF lower than 10-12 A. Furthermore, a hot carrier stress methodology demonstrated threshold voltage (VTH) shifts of 0.4 V and 1.8 V for ZnO and IGZO, respectively, after stress (Fig. 2) [2]. Continued research is required to ascertain the electrically active defects responsible for the VTH shift. Please click Additional Files below to see the full abstract

    Fermi Surface as the Driving Mechanism for Helical Antiferromagnetic Ordering in Gd-Y Alloys

    Full text link
    The first direct experimental evidence for the Fermi surface (FS) driving the helical antiferromagnetic ordering in a gadolinium-yttrium alloy is reported. The presence of a FS sheet capable of nesting is revealed, and the nesting vector associated with the sheet is found to be in excellent agreement with the periodicity of the helical ordering.Comment: 4 pages, 4 figure

    Adsorption of CO2 on Amine-Grafted Activated Carbon

    Get PDF
    Adsorption on amine-grafted materials may be a potentially attractive alternative to capturing CO2 from power plants. Activated Carbon (AC) has been proposed as a potential adsorbent due to its natural affinity for CO2 and to the possibility of tailoring textural properties and surface chemistry to enhance capacity and selectivity. An AC commercial sample was functionalized with monoethanolamine (MEA) in order to obtain nitrogen-enriched AC with two different loadings (ACN10 and ACN20). Samples characterization was carried out by nitrogen adsorption/desorption isotherms at 77 K, XPS, FTIR and adsorption microcalorimetry. CO2 equilibrium adsorption experiments were accomplished in a volumetric system in the pressure range of vacuum up to 10 bar, at 298 and 348 K. Impregnated activated carbon presented different chemical and textural characteristics with a significant reduction in the surface area, depending on the amine loading. A high adsorption capacity at room temperature and high pressure was observed for the pristine AC as compared to the modified samples. The reduction in surface area affected the adsorption capacity of CO2 at 298 and 348 K, except for adsorption on ACN10 at 348 K, which suggests the occurrence of chemisorption.Fil: Bezerra, Diôgo P.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; BrasilFil: Da Silva, Francisco W. M.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; BrasilFil: de Moura, Pedro A. S.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; BrasilFil: Sapag, Manuel Karim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaFil: Vieira, Rodrigo S.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; BrasilFil: Rodriguez Castellon, Enrique. Universidad de Malaga. Facultad de Ciencias; EspañaFil: de Azevedo, Diana C. S.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; Brasi

    Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks

    Get PDF
    The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations (MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses. Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is observed in low-collisionality, low q(95) plasmas with resonant and non-resonant MPs. In low-collisionality H-mode plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The fast-ion response to externally applied MPs presented here may be of general interest for the community to better understand the MP field penetration and overall plasma response.Ministerio de EconomĂ­a y Competitividad RYC-2011-09152, ENE2012-31087Marie Curie FP7 Integration PCIG11-GA-2012-321455US Department of Energy DE-FC02-04ER54698, SC-G903402, DEFG02- 04ER54761, DE-AC02-09CH11466, DE-FG02- 08ER54984NRF Korea 2009-008201

    The Unusual X-ray Spectrum of FU Orionis

    Full text link
    FU Orionis stars (FUors) are young low-mass eruptive stars that are thought to be accreting at high rates. They could give rise to soft X-ray emission from accretion shocks, but their X-ray properties are largely unknown. We report the first X-ray detection of the prototype star FU Orionis with XMM-Newton. Its X-ray spectrum is unusual compared to those of classical T Tauri stars (cTTS). The cool and hot components typically detected in cTTS are present but are seen through different absorption column densities. A heavily-absorbed hot component at kT > 5 keV accounts for most of the observed flux and a strong Fe K emission line is present. Such high temperatures are characteristic of magnetic processes rather than shock emission. We discuss possible origins of the unusual spectrum in the context of a complex physical environment that likely includes disk accretion, a strong wind, magnetic activity, and close binarity.Comment: ApJ, vol. 643, in press. 23 pages, 4 figures, 1 tabl
    • …
    corecore