18,820 research outputs found
Light composite Higgs boson from the normalized Bethe-Salpeter equation
Scalar composite boson masses have been computed in QCD and Technicolor
theories with the help of the homogeneous Bethe-Salpeter equation (BSE),
resulting in a scalar mass that is twice the dynamically generated fermion or
technifermion mass (). We show that in the case of walking (or
quasi-conformal) technicolor theories, where the behavior with the
momenta may be quite different from the one predicted by the standard operator
product expansion, this result is incomplete and we must consider the effect of
the normalization condition of the BSE to determine the scalar masses. We
compute the composite Higgs boson mass for several groups with technifermions
in the fundamental and higher dimensional representations and comment about the
experimental constraints on these theories, which indicate that models based on
walking theories with fermions in the fundamental representation may, within
the limitations of our approach, have masses quite near the actual direct
exclusion limit.Comment: 9 pages, 4 figures, minor corrections, to appear in Physical Review
Nonlinear switching and solitons in PT-symmetric photonic systems
One of the challenges of the modern photonics is to develop all-optical
devices enabling increased speed and energy efficiency for transmitting and
processing information on an optical chip. It is believed that the recently
suggested Parity-Time (PT) symmetric photonic systems with alternating regions
of gain and loss can bring novel functionalities. In such systems, losses are
as important as gain and, depending on the structural parameters, gain
compensates losses. Generally, PT systems demonstrate nontrivial
non-conservative wave interactions and phase transitions, which can be employed
for signal filtering and switching, opening new prospects for active control of
light. In this review, we discuss a broad range of problems involving nonlinear
PT-symmetric photonic systems with an intensity-dependent refractive index.
Nonlinearity in such PT symmetric systems provides a basis for many effects
such as the formation of localized modes, nonlinearly-induced PT-symmetry
breaking, and all-optical switching. Nonlinear PT-symmetric systems can serve
as powerful building blocks for the development of novel photonic devices
targeting an active light control.Comment: 33 pages, 33 figure
Recommended from our members
Solid Freeform Fabrication of Functional Silicon Nitride Ceramics by Laminated Object Manufacturing 1
The processing of silicon nitride (Si3N4) structural ceramics by Laminated Object
Manufacturing (LOM) using ceramic tape preforms was investigated. The key processing stages
involved green shape formation (which used the LOM process), followed by the burnout of all
organics, and final densification by pressureless sintering. Two material systems were
considered. These were a) monolithic Si3N4 and b) a preceramic polymer infiltrated Si3N4. The
raw materials for the process were tape preforms of Si3N4, which were fabricated by standard
tape casting techniques.
Mechanical property data obtained for the LOM processed Si3N4 showed high strength and
fracture toughness values. The room temperature and high temperature (1260 o
C) flexural
strengths were in the range of 700-900 MPa and 360-400 MPa, respectively. The fracture
toughness averaged from 5.5-7.5 MPa.m1/2. These strength and fracture toughness values are
comparable to those reported for conventionally prepared Si3N4 ceramics. Thus, this research
demonstrated that the LOM technique is a viable method for preparing functional Si3N4 ceramics
with good physical and mechanical properties.Mechanical Engineerin
Spatial characteristics of observed precipitation fields: A catalog of summer storms in Arizona, Volume 1
Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth
Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds
Aflatoxin contamination of nuts is an increasing concern to the consumer's health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B), 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G), and 29 as A. tamarii (all nonaflatoxigenic). Aflatoxins were detected in only one sample at 4.97 μg/kg
The role of electron-electron interactions in two-dimensional Dirac fermions
The role of electron-electron interactions on two-dimensional Dirac fermions
remains enigmatic. Using a combination of nonperturbative numerical and
analytical techniques that incorporate both the contact and long-range parts of
the Coulomb interaction, we identify the two previously discussed regimes: a
Gross-Neveu transition to a strongly correlated Mott insulator, and a
semi-metallic state with a logarithmically diverging Fermi velocity accurately
described by the random phase approximation. Most interestingly, experimental
realizations of Dirac fermions span the crossover between these two regimes
providing the physical mechanism that masks this velocity divergence. We
explain several long-standing mysteries including why the observed Fermi
velocity in graphene is consistently about 20 percent larger than the best
values calculated using ab initio and why graphene on different substrates show
different behavior.Comment: 11 pages, 4 figure
- …