1,715 research outputs found

    Tumor bed brachytherapy for locally advanced laryngeal cancer: a feasibility assessment of combination with ferromagnetic hyperthermia

    Get PDF
    Purpose. To assess the feasibility of adding hyperthermia to an original method of organ-preserving brachytherapy treatment for locally advanced head and neck tumors. Methods and materials. The method involves organ-preserving tumor resection and adjunctive high-dose-rate (HDR) brachytherapy delivered via afterloading catheters. These catheters are embedded in a polymeric implant prepared intraoperatively to fill the resection cavity, allowing precise computer planning of dose distribution in the surrounding at-risk tumor bed tissue. Theoretical and experimental analyzes address the feasibility of heating the tumor bed implant by coupling energy from a 100 kHz magnetic field applied externally into ferromagnetic particles, which are uniformly distributed within the implant. The goal is to combine adjuvant hyperthermia (40 °C–45 °C) to at-risk tissue within 5 mm of the resection cavity for thermal enhancement of radiation and chemotherapy response. Results. A five-year relapse free survival rate of 95.8% was obtained for a select group of 48 male patients with T3N0M0 larynx tumors, when combining organ-preserving surgery with HDR brachytherapy from a tumor bed implant. Anticipating the need for additional treatment in patients with more advanced disease, a theoretical analysis demonstrates the ability to heat at-risk tissue up to 10 mm from the surface of an implant filled with magnetically coupled ferromagnetic balls. Using a laboratory induction heating system, it takes just over 2 min to increase the target tissue temperature by 10 °C using a 19% volume fraction of ferromagnetic spheres in a 2 cm diameter silicone implant. Conclusion. The promising clinical results of a 48 patient pilot study demonstrate the feasibility of a new organ sparing treatment for laryngeal cancer. Anticipating the need for additional therapy, theoretical estimations of potential implant heating are confirmed with laboratory experiments, preparing the way for future implementation of a thermobrachytherapy implant approach for organ-sparing treatment of locally advanced laryngeal cancer

    Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    Get PDF
    Honey bees (Apismellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g.,immunesystem). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included ano-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation

    The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage with cerebral amyloid angiopathy: model development and diagnostic test accuracy study

    Get PDF
    BACKGROUND: Identification of lobar spontaneous intracerebral haemorrhage associated with cerebral amyloid angiopathy (CAA) is important because it is associated with a higher risk of recurrent intracerebral haemorrhage than arteriolosclerosis-associated intracerebral haemorrhage. We aimed to develop a prediction model for the identification of CAA-associated lobar intracerebral haemorrhage using CT features and genotype.METHODS: We identified adults with first-ever intracerebral haemorrhage diagnosed by CT, who died and underwent research autopsy as part of the Lothian IntraCerebral Haemorrhage, Pathology, Imaging and Neurological Outcome (LINCHPIN) study, a prospective, population-based, inception cohort. We determined APOE genotype and radiologists rated CT imaging appearances. Radiologists were not aware of clinical, genetic, and histopathological features. A neuropathologist rated brain tissue for small vessel diseases, including CAA, and was masked to clinical, radiographic, and genetic features. We used CT and APOE genotype data in a logistic regression model, which we internally validated using bootstrapping, to predict the risk of CAA-associated lobar intracerebral haemorrhage, derive diagnostic criteria, and estimate diagnostic accuracy.FINDINGS: Among 110 adults (median age 83 years [IQR 76-87], 49 [45%] men) included in the LINCHPIN study between June 1, 2010 and Feb 10, 2016, intracerebral haemorrhage was lobar in 62 (56%) participants, deep in 41 (37%), and infratentorial in seven (6%). Of the 62 participants with lobar intracerebral haemorrhage, 36 (58%) were associated with moderate or severe CAA compared with 26 (42%) that were associated with absent or mild CAA, and were independently associated with subarachnoid haemorrhage (32 [89%] of 36 vs 11 [42%] of 26; p=0·014), intracerebral haemorrhage with finger-like projections (14 [39%] of 36 vs 0; p=0·043), and APOE ɛ4 possession (18 [50%] of 36 vs 2 [8%] of 26; p=0·0020). A prediction model for CAA-associated lobar intracerebral haemorrhage using these three variables had excellent discrimination (c statistic 0·92, 95% CI 0·86-0·98), confirmed by internal validation. For the rule-out criteria, neither subarachnoid haemorrhage nor APOE ɛ4 possession had 100% sensitivity (95% CI 88-100). For the rule-in criteria, subarachnoid haemorrhage and either APOE ɛ4 possession or finger-like projections had 96% specificity (95% CI 78-100).INTERPRETATION: The CT and APOE genotype prediction model for CAA-associated lobar intracerebral haemorrhage shows excellent discrimination in this cohort, but requires external validation. The Edinburgh rule-in and rule-out diagnostic criteria might inform prognostic and therapeutic decisions that depend on identification of CAA-associated lobar intracerebral haemorrhage.FUNDING: UK Medical Research Council, The Stroke Association, and The Wellcome Trust.</p

    Functionality of the paracoccidioides mating α-pheromone-receptor system

    Get PDF
    Recent evidence suggests that Paracoccidioides species have the potential to undergo sexual reproduction, although no sexual cycle has been identified either in nature or under laboratory conditions. In the present work we detected low expression levels of the heterothallic MAT loci genes MAT1-1 and MAT1-2, the a-pheromone (PBa) gene, and the a- and apheromone receptor (PREB and PREA) genes in yeast and mycelia forms of several Paracoccidioides isolates. None of the genes were expressed in a mating type dependent manner. Stimulation of P. brasiliensis MAT1-2 strains with the synthetic a pheromone peptide failed to elicit transcriptional activation of MAT1-2, PREB or STE12, suggesting that the strains tested are insensitive to a-pheromone. In order to further evaluate the biological functionality of the pair a-pheromone and its receptor, we took advantage of the heterologous expression of these Paracoccidioides genes in the corresponding S. cerevisiae null mutants. We show that S. cerevisiae strains heterologously expressing PREB respond to Pba pheromone either isolated from Paracoccidioides culture supernatants or in its synthetic form, both by shmoo formation and by growth and cell cycle arrests. This allowed us to conclude that Paracoccidioides species secrete an active a-pheromone into the culture medium that is able to activate its cognate receptor. Moreover, expression of PREB or PBa in the corresponding null mutants of S. cerevisiae restored mating in these non-fertile strains. Taken together, our data demonstrate pheromone signaling activation by the Paracoccidioides a-pheromone through its receptor in this yeast model, which provides novel evidence for the existence of a functional mating signaling system in Paracoccidioides.MHJS and JFM were supported by Fundacão para a Ciência e Tecnologia (FCT) grants. This work was supported by a grant from FCT (PTDC/BIA-MIC/ 108309/2008)

    Functional lung avoidance for individualized radiotherapy (FLAIR): Study protocol for a randomized, double-blind clinical trial.

    Get PDF
    BACKGROUND: Although radiotherapy is a key component of curative-intent treatment for locally advanced, unresectable non-small cell lung cancer (NSCLC), it can be associated with substantial pulmonary toxicity in some patients. Current radiotherapy planning techniques aim to minimize the radiation dose to the lungs, without accounting for regional variations in lung function. Many patients, particularly smokers, can have substantial regional differences in pulmonary ventilation patterns, and it has been hypothesized that preferential avoidance of functional lung during radiotherapy may reduce toxicity. Although several investigators have shown that functional lung can be identified using advanced imaging techniques and/or demonstrated the feasibility and theoretical advantages of avoiding functional lung during radiotherapy, to our knowledge this premise has never been tested via a prospective randomized clinical trial. METHODS/DESIGN: Eligible patients will have Stage III NSCLC with intent to receive concurrent chemoradiotherapy (CRT). Every patient will undergo a pre-treatment functional lung imaging study using hyperpolarized 3He MRI in order to identify the spatial distribution of normally-ventilated lung. Before randomization, two clinically-approved radiotherapy plans will be devised for all patients on trial, termed standard and avoidance. The standard plan will be designed without reference to the functional state of the lung, while the avoidance plan will be optimized such that dose to functional lung is as low as reasonably achievable. Patients will then be randomized in a 1:1 ratio to receive either the standard or the avoidance plan, with both the physician and the patient blinded to the randomization results. This study aims to accrue a total of 64 patients within two years. The primary endpoint will be a pulmonary quality of life (QOL) assessment at 3 months post-treatment, measured using the functional assessment of cancer therapy-lung cancer subscale. Secondary endpoints include: pulmonary QOL at other time-points, provider-reported toxicity, overall survival, progression-free survival, and quality-adjusted survival. DISCUSSION: This randomized, double-blind trial will comprehensively assess the impact of functional lung avoidance on pulmonary toxicity and quality of life in patients receiving concurrent CRT for locally advanced NSCLC. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT02002052

    Identification of Glycochenodeoxycholate 3-O-glucuronide and Glycodeoxycholate 3-O-glucuronide as Highly Sensitive and Specific OATP1B1 Biomarkers

    Get PDF
    The aim of this study was to investigate the sensitivity and specificity of endogenous glycochenodeoxycholate and glycodeoxycholate 3-O-glucuronides (GCDCA-3G and GDCA-3G) as substrates for organic anion transporting polypeptide 1B1 (OATP1B1) in humans. We measured fasting levels of plasma GCDCA-3G and GDCA-3G using liquid chromatography-tandem mass spectrometry in 356 healthy volunteers. The mean plasma levels of both compounds were similar to 50% lower in women than in men (P = 2.25 x 10(-18) and P = 4.73 x 10(-9)). In a microarray-based genome-wide association study, theSLCO1B1rs4149056 (c.521T>C, p.Val174Ala) variation showed the strongest association with the plasma GCDCA-3G (P = 3.09 x 10(-30)) and GDCA-3G (P = 1.60 x 10(-17)) concentrations. The mean plasma concentration of GCDCA-3G was 9.2-fold (P = 8.77 x 10(-31)) and that of GDCA-3G was 6.4-fold (P = 2.45x10(-13)) higher in individuals with theSLCO1B1c.521C/C genotype than in those with the c.521T/T genotype. No other variants showed independent genome-wide significant associations with GCDCA-3G or GDCA-3G. GCDCA-3G was highly efficacious in detecting theSLCO1B1c.521C/C genotype with an area under the receiver operating characteristic curve of 0.996 (P <0.0001). The sensitivity (98-99%) and specificity (100%) peaked at a cutoff value of 180 ng/mL for men and 90 ng/mL for women. In a haplotype-based analysis,SLCO1B1*5and*15were associated with reduced, andSLCO1B1*1B, *14, and *35with increased OATP1B1 function.In vitro, both GCDCA-3G and GDCA-3G showed at least 6 times higher uptake by OATP1B1 than OATP1B3 or OATP2B1. These data indicate that the hepatic uptake of GCDCA-3G and GDCA-3G is predominantly mediated by OATP1B1. GCDCA-3G, in particular, is a highly sensitive and specific OATP1B1 biomarker in humans.Peer reviewe
    • …
    corecore