90 research outputs found

    Evolution in agricultural systems: Moving toward the understanding of complexity

    Get PDF
    Agricultural fields are typically simplified ecosystems compared to natural sites, a characteristic that has long-attracted researchers in Ecology and Evolution. In recent years, there has been a rising interest in understanding how agricultural systems are shaped by evolution in the context of changing agricultural practices by integrating biological information of crop systems. This editorial introduces the special issue “Evolution in agricultural systems,” incorporating the articles published within this issue into three general areas of research: phenotypic and genetic responses to the environment, biotic interactions and the role of microbes. Together, this body of work unveils unforeseen complexity at all levels, from microbes to trophic chains. Understanding such complexity is critical not only to better understand natural systems, but also if we wish to improve the sustainability of the food system.info:eu-repo/semantics/publishedVersio

    Multiple mating rescues offspring sex ratio but not productivity in a haplodiploid exposed to developmental heat stress

    Get PDF
    Reproduction is generally more sensitive to high temperatures than survival and arguably a better predictor of the response of populations to climate change than survival estimates. Still, how temperature simultaneously impacts male and female reproductive success, the mating system and the operational sex ratio remains an open question. Here, we addressed how a sublethal high temperature affects the reproductive system of the haplodiploid spider mite Tetranychus urticae. Males and females maintained at 25 or 36°C during development were paired and the fertility of both sexes, their mating and remating eagerness, and the paternity of the offspring of females with different mating histories were measured. Female and male fertility decreased at 36°C compared to 25°C, resulting in lower offspring production and a more male-biased sex ratio, respectively, because of haplodiploidy. However, when either heat-stressed females or females that mated with heat-stressed males remated, there was a shift in paternity share, with more than one male contributing to the offspring. This was accompanied by reduced mating eagerness in pairs with partially sterile males and increased remating eagerness in pairs in which at least one sex was partially sterile in the first mating. The observed temperature-induced changes in female remating eagerness and sperm use allowed restoring the offspring sex ratio, by increasing the proportion of fertilized offspring, but did not lead to the recovery of offspring number. The temperature-induced changes in the mating behaviour and mating system should alter the interactions within and between the sexes, and with it the strength of sexual selection and sexual conflict in this species. Whether such changes are sufficient to prevent population extinction, despite the inability to recover offspring number, remains an open question.info:eu-repo/semantics/publishedVersio

    The genetic basis and adult reproductive consequences of developmental thermal plasticity

    Get PDF
    Increasing temperature and thermal variability generate profound selection on populations. Given the fast rate of environmental change, understanding the role of plasticity and genetic adaptation in response to increasing temperatures is critical. This may be especially true for thermal effects on reproductive traits in which thermal fertility limits at high temperatures may be lower than for survival traits. Consequences of changing environments during development on adult phenotypes may be particularly problematic for core traits such as reproduction that begin early in development. Here we examine the consequences of developmental thermal plasticity on subsequent adult reproductive traits and its genetic basis. We used a panel of Drosophila melanogaster (the Drosophila Genetic Reference Panel; DGRP) in which male fertility performance was previously defined as either showing relatively little (status = ‘high’-performing lines) or substantial (‘low’-performing lines) decline when exposed to increasing developmental temperatures. We used a thermal reaction norm approach to quantify variation in the consequences of developmental thermal plasticity on multiple adult reproductive traits, including sex-specific responses, and to identify candidate genes underlying such variation. Developmental thermal stress impacted the means and thermal reaction norms of all reproductive traits except offspring sex ratio. Mating success declined as temperature increased with no difference between high and low lines, whereas increasing temperature resulted in declines for both male and female fertility and productivity but depended on line status. Fertility and offspring number were positively correlated within and between the sexes across lines, but males were more affected than females. We identified 933 SNPs with significant evolved genetic differentiation between high and low lines. In all, 54 of these lie within genomic windows of overall high differentiation, have significant effects of genotype on the male thermal reaction norm for productivity and are associated with 16 genes enriched for phenotypes affecting reproduction, stress responses and autophagy in Drosophila and other organisms. Our results illustrate considerable plasticity in male thermal limits on several reproductive traits following development at high temperature, and we identify differentiated loci with relevant phenotypic effects that may contribute to this population variation. While our work is on a single population, phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males. Such large fitness costs may have both short- and long-term consequences for the evolution of populations in response to a warming world.info:eu-repo/semantics/publishedVersio

    Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering

    Get PDF
    Silicon is known to have an influence on calcium phosphate deposition and on the differentiation of bone precursor cells. This study explores the effect of the incorporation of silanol (Si–OH) groups into poly- meric scaffolds on the osteogenic differentiation of human adipose stem cells (hASC) cultured under dynamic and static conditions. A blend of corn starch with polycaprolactone (30/70 wt.%, SPCL) was used to produce three-dimensional fibre meshes scaffolds by the wet-spinning technique, and a calcium sili- cate solution was used as a non-solvent to develop an in situ functionalization with Si–OH groups. In vitro assessment, using hASC, of functionalized and non-functionalized scaffolds was evaluated in either a- MEM or osteogenic medium under static and dynamic conditions (provided by a flow perfusion bioreac- tor). The functionalized materials, SPCL–Si, exhibit the capacity to sustain cell proliferation and induce their differentiation into the osteogenic lineage. The formation of mineralization nodules was observed in cells cultured on the SPCL–Si materials. Culturing under dynamic conditions using a flow perfusion bioreactor was shown to enhance the hASC proliferation and differentiation and a better distribution of cells within the material. The present work demonstrates the potential of these functionalized mate- rials for future applications in bone tissue engineering. Additionally, these results highlight the simplicity, economic and reliable production process of those materials.Fundação para a Ciência e a Tecnologia (FCT) - (Grant SFRH/BD/69962/2010, SFRH/BPD/26648/2006, PTDC/CTM/67560/2006European NoE EXPERTISSUES - (NMP3-CT-2004- 50028

    Stimulatory effects of inorganic ions on osteogenesis in vitro

    Get PDF
    Introduction: Several studies demonstrated the effect of silicate ions (Si) on differentiation of bone precursor cells1,2, although its exact role in processes related to bone formation and remodeling is still incompletely understood. The focus of this work is to explore the effect of calcium and silicate ions on growth and osteogenic differentiation of human mesenchymal stem cells (hMSCs). This strategy may reduce the need for growth factors required to stimulate bone formation in regenerative approaches, decreasing the associated costs and overcoming stability issues. Materials and Methods In order to define the range of Si concentrations that are not toxic to cells, we performed a preliminary study varying Si concentrations from 0.00357mM to 4mM. The concentration of the Ca ions was selected based on the earlier study by Barradas et. al3. Cell culture media were supplemented by using sodium silicate (Na2SiO3) and/or calcium chloride dehydrate (CaCl2*2H2O) as Si and Ca precursors, respectively. hMSCs derived from bone marrow were seeded at a seeding density of 2.000 cells/cm2 and allowed to adhere overnight. Then, the medium was replaced by the appropriate supplemented medium and cells were cultured for 3, 7, 14 and 18 days. Basic and osteogenic media were used as negative and positive controls. Cell proliferation was evaluated by DNA quantification. hMSCs osteogenic gene expression was evaluated by Q-PCR. Results DNA quantification indicated an increase in cell number during the culture time for all the conditions. Results obtained by Q-PCR revealed a significantly higher expression of osteocalcin (OC) and bone morphogenetic protein-2 (BMP2) in cells cultured in media supplemented by both ions, as compared to media containing either Ca or Si alone. Discussion and Conclusions DNA quantification studies indicated that none of the selected concentrations had a negative influence on cell proliferation. The increase in osteogenic gene expression for cells cultured with both Ca and Si suggested a synergistic effect of the two ions on osteogenic differentiation of hMSCs. We further showed that cells cultured in the medium with the highest concentration of Ca (7.8mM) revealed a higher expression of the selected genes, which is in accordance with the earlier results by Barradas et al3. The obtained results suggest the importance of combining both ions, Ca and Si, for promoting the osteogenic differentiation of hMSCs. References 1. Hoppe A, Biomaterials 32: 2757-2774, 2011. 2. Beck Jr GR, Nanomedicine: Nanotechnology, Biology, and Medicine,1-11, 2011 3. Barradas AMC et al., Biomaterials 3205-3215, 2012. Acknowledgments The author thanks the Portuguese Foundation for Science and Technology (FCT) for the grant (SFRH/BD/69962/2010). Disclosures The authors have nothing to disclose

    Detrimental impact of a heatwave on male reproductive behaviour and fertility

    Get PDF
    Understanding how heatwaves impact on different aspects of mating behaviour and fertility is getting increasingly important. In this context, laboratory fertility and mating experiments involving manipulation and exposure of insects to different thermal conditions are common procedures. To conduct such experiments practical methods such as dyes are needed for an easy, non-invasive discrimination of individuals. We report here a study measuring the effect of an extended heat stress applied to males on several parameters of mating behaviour and fertility of laboratory populations of Drosophila subobscura derived from two distinct European locations. We found highly detrimental effects of heatwave on mating behaviour—with longer (courtship and copulation) latencies and lower mating occurrence but no changes in mating duration—and fertility, with reduced fecundity and reproductive success. Furthermore, we also tested the efficacy of food dye as a marker for individual discrimination and mating occurrence. While food dye did not allow to infer the occurrence of a mating based on a transfer of coloration from male to female, it did not affect mating and fertility, attesting its utility has a method for discriminating individuals within mating experiments in the context of thermal studies. Importantly, despite the fact that the heatwave was only applied in males, we observed an impact on behaviour of females that mated with stressed males, by often refusing their nuptial feeding. This opens possibilities for further integrated research on the changes of female and male mating behaviour and fertility under different thermal scenarios.info:eu-repo/semantics/publishedVersio

    Fluctuating heat stress during development exposes reproductive costs and putative benefits

    Get PDF
    Temperature and thermal variability are increasing worldwide, with well-known survival consequences. However, effects on other potentially more thermally sensitive reproductive traits are less understood, especially when considering thermal variation. Studying the consequences of male reproduction in the context of climate warming and ability to adapt is becoming increasingly relevant. Our goals were to test how exposure to different average temperatures that either fluctuated or remained constant impacts different male reproductive performance traits and to assess adaptive potential to future heat stress. We took advantage of a set of Drosophila melanogaster isogenic lines of different genotypes, exposing them to four different thermal conditions. These conditions represented a benign and a stressful mean temperature, applied either constantly or fluctuating around the mean and experienced during development when heat stress avoidance is hindered because of restricted mobility. We measured subsequent male reproductive performance for mating success, fertility, number of offspring produced and offspring sex ratio, and calculated the influence of thermal stress on estimated heritability and evolvability of these reproductive traits. Both costs and benefits to different thermal conditions on reproductive performance were found, with some responses varying between genotypes. Mating success improved under fluctuating benign temperature conditions and declined as temperature stress increased regardless of genotype. Fertility and productivity were severely reduced at fluctuating mean high temperature for all genotypes, but some genotypes were unaffected at constant high mean temperature. These more thermally robust genotypes showed a slight increase in productivity under the fluctuating benign condition compared to constant high temperature, despite both thermal conditions sharing the same temperature for 6 hr daily. Increasing thermal stress resulted in higher heritability and evolvability. Overall, the effects of temperature on reproductive performance depended on the trait and genotype; performance of some traits slightly increased when high temperatures were experienced for short periods but decreased substantially even when experiencing a benign temperature for a portion of each day. While thermal stress increased genetic variation that could provide adaptive potential against climate warming, this is unlikely to compensate for the overall severe negative effect on reproductive performance as mean temperature and variance increase.info:eu-repo/semantics/publishedVersio

    Silk‐Based antimicrobial polymers as a new platform to design drug‐free materials to impede microbial infections

    Get PDF
    Surgical site infections (SSI) represent a serious health problem that occur after invasive surgery, thus new antimicrobial biomaterials able to prevent SSI are needed. Silks are natural biopolymers with excellent biocompatibility, low immunogenicity and controllable biodegradability. Spider silkbased materials can be bioengineered and functionalized with specific peptides, such as antimicrobial peptides, creating innovative polymers. Herein, we explored new drugfree multifunctional silk films with antimicrobial properties, specifically tailored to hamper microbial infections. Different spider silk domains derived from the dragline sequence of the spider Nephila clavipes (6mer and 15mer, 27 and 41 kDa proteins, respectively) were fused with the two antimicrobial peptides, Hepcidin (Hep) and Human Neutrophil peptide 1 (HNP1). The selfassembly features of the spider silk domains (sheets) were maintained after functionalization. The bioengineered 6merHNP1 protein demonstrated inhibitory effects against microbial pathogens. Silkbased films with 6merHNP1 and different contents of silk fibroin (SF) significantly reduced bacterial adhesion and biofilm formation, whereas higher bacterial counts were found on the films prepared with 6mer or SF alone. The silkbased films showed no cytotoxic effects on human foreskin fibroblasts. The positive cellular response, together with structural and antimicrobial properties, highlight the potential of these multifunctional silkbased films as new materials for preventing SSI.The Portuguese Foundation for Science and Technology (FCT) under the project PTDC/BBB-BIO/0827/2012 and by the European Regional Development Fund (FEDER) through the "COMPETE" - Operational Programme for Competitiveness factors (FCOMP-01-0124-FEDER-028120) supported this work. The authors would like to thank Prof. Celia Manaia from the Escola Superior de Biotecnologia (Porto, Portugal) for providing the Pseudomonas sp. bacteria; and Dr. Alberta Faustino from the Hospital de S. Marcos (Braga, Portugal) for providing the other bacterial strains. A. R. Franco thanks FCT through the PostDoctoral scholarship SFRH/BPD/100760/2014.info:eu-repo/semantics/publishedVersio

    Limited host availability disrupts the genetic correlation between virulence and transmission

    Get PDF
    Virulence is expected to be linked to parasite fitness via transmission. However, it is not clear whether this relationship is genetically determined, nor if it differs when transmission occurs continuously during, or only at the end of, the infection period. Here, we used inbred lines of the macroparasitic spider mite Tetranychus urticae to disentangle genetic vs. nongenetic correlations among traits, while varying parasite density and opportunities for transmission. A positive genetic correlation between virulence and the number of transmitting stages produced was found under continuous transmission. However, if transmission occurred only at the end of the infection period, this genetic correlation disappeared. Instead, we observed a negative relationship between virulence and the num ber of transmitting stages, driven by density dependence. Thus, within-host density dependence caused by reduced opportunities for transmission may hamper selection for higher virulence, providing a novel explanation as to why limited host availability leads to lower virulenceinfo:eu-repo/semantics/publishedVersio
    corecore