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Silicon is known to have an influence on calcium phosphate deposition and on the differentiation of bone
precursor cells. This study explores the effect of the incorporation of silanol (Si-OH) groups into poly-
meric scaffolds on the osteogenic differentiation of human adipose stem cells (hASC) cultured under
dynamic and static conditions. A blend of corn starch with polycaprolactone (30/70 wt.%, SPCL) was used
to produce three-dimensional fibre meshes scaffolds by the wet-spinning technique, and a calcium sili-
cate solution was used as a non-solvent to develop an in situ functionalization with Si-OH groups. In vitro
assessment, using hASC, of functionalized and non-functionalized scaffolds was evaluated in either o-
MEM or osteogenic medium under static and dynamic conditions (provided by a flow perfusion bioreac-
tor). The functionalized materials, SPCL-Si, exhibit the capacity to sustain cell proliferation and induce
their differentiation into the osteogenic lineage. The formation of mineralization nodules was observed
in cells cultured on the SPCL-Si materials. Culturing under dynamic conditions using a flow perfusion
bioreactor was shown to enhance the hASC proliferation and differentiation and a better distribution
of cells within the material. The present work demonstrates the potential of these functionalized mate-
rials for future applications in bone tissue engineering. Additionally, these results highlight the simplicity,
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economic and reliable production process of those materials.

© 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Tissue engineering (TE) is a promising field for developing bone
material capable of substituting for the conventional autogenic or
allogenic transplants [1]. Currently, the general strategy for bone
TE lies in biocompatible and biodegradable scaffolds seeded with
stem cells [2]. However, those scaffolds have limited osteoconduc-
tivity and osteoinductivity, which compromise their use in bone TE
[3]. Thus, the degree of success of bone TE greatly depends on the
intrinsic properties of the material used to obtain a biocompatible
and biodegradable scaffold with osteoinductive, osteoconductive
and osteogenic properties in order to induce bone regeneration
[1,4,5].

Recently, silicate-based materials have been investigated, since
they have the ability to activate bone-related gene expression and
stimulate osteoblast proliferation and differentiation [6,7]. For
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instance, bioactive ceramics, containing hydroxyapatite and silica,
can degrade in proportion to the rate of new bone formation [8].
Thus, attention is focused on the importance of the chemical com-
position of materials, particularly the presence of silicon as a key
player in enhancing bone repair. Moreover, culturing cells under
dynamic conditions has been revealed to provide an important
stimulus for the proliferation and differentiation of cells and,
moreover, to mimic in vivo pressure gradients. Previous studies
[9-12] showed that the use of a flow perfusion bioreactor enhances
calcium deposition and osteogenic differentiation, and improves
the cell distribution in a three-dimensional (3-D) scaffold.

In this context, the present authors aim to develop a biodegrad-
able material with osteo stimulative properties combined with hu-
man adipose stem cells (hASC), which in future can serve as a
platform for the development of bone implants able to replace
the “gold standard” autograft [13,14].

In order to target this ambitious goal, a 3-D scaffold of SPCL (a
blend of starch with polycaprolactone) was synthesized, incorpo-
rating Si-OH groups by wet-spinning, using a calcium silicate
solution as a coagulation bath, as described previously [15,16].
SPCL without Si-OH groups, using methanol as a coagulation bath,
was used as control. In vitro studies were performed by seeding
and culturing wet-spun fibre mesh scaffolds, both with and

1742-7061/$ - see front matter © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.actbio.2012.05.025


http://dx.doi.org/10.1016/j.actbio.2012.05.025
mailto:belinha@dep.uminho.pt
mailto:rgreis@dep.uminho.pt
http://dx.doi.org/10.1016/j.actbio.2012.05.025
http://www.sciencedirect.com/science/journal/17427061
http://www.elsevier.com/locate/actabiomat

3766 A.L Rodrigues et al./Acta Biomaterialia 8 (2012) 3765-3776

without Si-OH groups, with hASC, either in a flow perfusion biore-
actor or under static conditions. The physicochemical properties
and biological response of hASC to the scaffolds developed were
evaluated. It was hypothesized that this unconventional architec-
ture, combined with the release of silicon (Si) into medium, would
render an osteoconductive surface to the cells to which they would
adhere, differentiate and produce a mineralized matrix, and in an
in vivo situation would have an osteoinductive effect to induce
bone regeneration.

2. Materials and methods
2.1. Preparation of a bioactive polymeric fibre mesh by wet-spinning

A biodegradable thermoplastic blend of corn starch with polyc-
aprolactone (30/70 wt.%, SPCL) was obtained from Novamont, Italy.
Chloroform (CHCl3), methanol (CH30H), tetraethoxysilane (TEOS:-
Si(OC,Hs)4) and calcium chloride (CaCl,) were obtained from Sig-
ma-Aldrich. Ethyl alcohol (C;Hs0H) was obtained from Panreac.

To produce a bioactive 3-D structure, SPCL granules were dis-
solved in chloroform at a concentration of 30% (w/v) in order to ob-
tain a polymeric solution with proper viscosity. Then, the
polymeric solution was loaded into a 5 mL plastic syringe with a
needle (0.8 mm internal diameter) attached to it. The syringe
was connected to a programmable syringe pump (KR analytical,
precision syringe pump, Fusion 200; Chemics Inc., USA) to inject
the polymeric solution at a controlled pump rate of 45mLh .
The fibre mesh structure was formed during the process by the
random movement of the coagulation bath. Two different coagula-
tion baths were used: (i) methanol, as control; and (ii) calcium sil-
icate solution previously studied [15,16]. The calcium silicate
solution was prepared by mixing TEOS, ultra-pure water,
C,HsOH, 1.0 MHCI aqueous solution and CaCl, for 10 min in an
ice bath with the following molar ratio Si(OC;Hs)4/H,0/CoHsOH/
HCl/CaCl; of 1.0/4.0/4.0/0.014/0.20. Using methanol, the formed fi-
bre meshes were dried at room temperature overnight in order to
remove any remaining solvent, and were designated as SPCL. In the
case of using calcium silicate solution, the fibre meshes were dried
in an oven at 60 °C for 24 h, and designated as SPCL-Si. Afterwards,
two thin wet-spun fibre meshes were assembled to produce a 3-D
bioactive scaffold with different properties in terms of porous size,
interconnectivity, chemical characteristics and mechanical perfor-
mance (Fig. 1).

Scaffolds were cut into @ 8 mm discs with thickness ~1.16 mm.
Prior to any cell culture experiments, the scaffolds were sterilized
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by ethylene oxide, with a cycle time of 14 h at a working temper-
ature of 45 °C in a chamber under a pressure of 50 kPa. Six samples
at a time were used for each experiment, separately for all time
points and conditions.

2.2. Characterization of wet-spun fibre mesh scaffolds

For the morphological and the elemental characterization of the
3-D structures a field emission scanning electron microscope
(NanoSEM, FEI Nova 200, USA) equipped with an energy dispersive
spectroscope (Pegasus X4M) was used. Prior to any SEM observa-
tions, all scaffolds were coated with gold-palladium by ion sput-
tering. A graphite coating was used for energy dispersive
spectroscopy (EDX) analysis to detect the possible presence of ele-
ments. The EDX analysis was performed using three samples for
each condition.

The chemical structure of the surface of polymeric structures,
SPCL and SPCL-Si, was analysed by Fourier-transformed IR spec-
troscopy with attenuated total reflectance (FTIR-ATR) in an
IRPrestige-21 (Shimadzu, Japan). Spectra were collected at
4 cm™'resolution using 60 scans in the spectral range 4400-
800 cm'. For each sample (SPCL and SPCL-Si), three individual
measurements were performed.

The morphology and microstructure of fibre meshes scaffolds
was evaluated using high-resolution micro-computed tomography
(1CT) with a Skyscan 1072 scanner (Skyscan, Kontich, Belgium). X-
ray scans were performed in triplicate, using a resolution of pixel
size 4.17 pm and integration time 2.1 s. The X-ray source was set
at energy 61 keV and current 144 pA. Approximately 400 projec-
tions were acquired over a rotation range of 180° with a rotation
step of 0.45°. Data sets were reconstructed using standardized
cone-beam reconstruction software (NRecon v1.4.3; SkyScan).
Representative data sets of 40 slices were segmented into binary
images with a dynamic threshold of 37-120 (grey values) to iden-
tify the organic and inorganic phases. These data were used for
morphometric analysis (CT Analyser, v 1.5.1.5, SkyScan) and to
build 3-D models (ANT 3D creator, v 2.4, SkyScan). The morpho-
metric analysis included porosity. For this analysis, six samples
were used.

The roughness of both scaffolds, SPCL and SPCL-Si, was charac-
terized using a Wyko-NT 1100 interferometric optical profilometer
(Veeco Instruments, USA) in vertical scanning interferometry (VSI)
measurement mode. This is a non-contact optical profiling system
that provides high resolution, 3-D surface measurement, from sub-
nanometre surface roughness to millimetre step-height. The

I1l. Moulding and heat treatment
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Fig. 1. Schematic drawing of the method used in this study for producing 3-D bioactive scaffold using wet-spinning technology and two coagulations baths, methanol and
calcium silicate solution. A 3-D scaffold is made by stacking two layers of wet-spun fibre meshes.
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images were processed and analysed with the WycoVision®32 ana-
lytical software package. For each sample (SPCL and SPCL-Si), five
individual measurements were performed.

2.3. In vitro assessment of the wet-spun fibre mesh scaffolds

2.3.1. hASC harvesting and isolation

hASC were harvested from two women 25 and 70 years old, un-
der a protocol previously established with the Department of Plas-
tic Surgery of “Hospital da Prelada” in Porto, Portugal, and isolated
through an enzymatic procedure at different time points. ASC were
enzymatically isolated from subcutaneous adipose tissue, as previ-
ously described [17]. The cells from each patient were used in two
independent experiments. Briefly, the lipoaspirate samples were
first washed with a solution of phosphate buffered saline (PBS)
and 10% antibiotic/antimycoticsolution (A/B, Gibco) and then di-
gested with 0.2% collagenase type Il solution (Sigma) for 45 min
with intermittent shaking, at 37 °C. Then the digested tissue was
filtered using a 100 pum filter mesh (Sigma-Aldrich), and the float-
ing adipocytes were separated from the precipitated stromal vas-
cular fraction by centrifugation at 1200rpm for 10 min.
Afterwards, the cell pellet was re-suspended in lysis buffer for
10 min to disrupt the erythrocytes and centrifuged at 800 rpm
for 10 min. Finally, the cells were again re-suspended and placed
in culture flasks with minimum essential o-medium (o-MEM)
(Gibco) supplemented with sodium bicarbonate, A/B and 10% (v/
v) of fetal bovine serum (FBS) (Gibco) at 37 °C with 5% CO,. Until
the cells reached 80-90% confluence, the medium was changed
every 2 days.

2.3.2. Static and dynamic perfusion culturing of human ASC on fibre
mesh scaffold

For the in vitro tests, two independent experiments were per-
formed, and in each experiment six samples were used per condi-
tion and culture time. Scaffolds without cells were used as controls
for all studies.

Cells were expanded, sub-cultured twice (passage 2) and
seeded onto SPCL and SPCL-Si scaffolds in 48-well plates at a den-
sity of 5 x 10° cells/scaffold in a 100 pL cell suspension and incu-
bated for 2 h. Then, 900 puL of a-MEM was added to the wells
containing cell-scaffolds constructs, and incubated 24 h to allow
cell attachment. Afterwards, cell-scaffold constructs were either
kept in the well cell culture plate (static culture) or transferred
to a flow perfusion bioreactor (dynamic culture) and further incu-
bated for 1, 7, 14 and 21 days. In static culture, the culture medium
was changed every 3 days. In both cases, static and dynamic, the
experiments were carried out using «-MEM or osteogenic medium
containing o-MEM, 10% FBS, 1% A/B and osteogenic supplements
(ascorbic acid (50 pg ml~!), dexamethasone (1073 M) and p-glycer-
ophosphate (10 mM)).

The flow perfusion bioreactor used for dynamic culture was
developed in the 3B’s research group [18] and is composed of a
main chamber that can hold up to 20 samples of @ 8 mm. The cul-
ture medium is pumped from a medium reservoir into the bioreac-
tor chamber by a peristaltic pump (Ismatec), which allows a
homogeneous distribution of the medium through scaffolds in
the individual containers of the perfusion chamber. In this study,
the flow rate was based on previous studies, and it was fixed to
0.1 mL min~! per scaffold [9,11,19]. The total volume of medium
in the flow system was 100 mL and was renewed every week.
The flow perfusion bioreactor was maintained in 5% CO, and incu-
bated at 37 °C for up to 21 days.

2.3.3. Cell morphology evaluation
The morphology of hASC cultured onto the fibre meshes was
analysed by SEM. The cell-scaffold constructs were washed with

PBS, fixed with a 2.5% gluteraldehyde solution (Sigma) for 1 h at
4 °C. Then, the samples were dehydrated in a series of ethanol-
water solutions with increasing ethanol concentration (30%, 50%,
70%, 90% and 100%, v/v) and treated with hexamethyldisilazane.
Afterwards, the samples were left to dry overnight.

2.3.4. Cell attachment, proliferation and differentiation

To investigate the attachment, proliferation and differentiation
of hASC, the cell-scaffold constructs were removed after 1, 7, 14
and 21 days, rinsed with PBS and transferred into eppendorf con-
taining sterile ultrapure water. Then, the samples were frozen at
—80°C and defrosted at room temperature before the DNA and
alkaline phosphatase (ALP) assays. Triplicates were analysed for
each sample at each time point for both assays.

2.3.4.1. DNA assay. The DNA content in the scaffolds was deter-
mined using the fluorescent picoGreen dsDNA (ds, double
stranded) quantification assay (Invitrogen Corporation, USA). Sam-
ples previously frozen (—80 °C) were thawed at room temperature
and then sonicated for 15 min to induce complete membrane lysis.
Supernatant fluorescence was measured (485 nm excitation and
528 nm emission) in a microplate reader (Synergy HT, BioTek
Instruments, USA) and the DNA amounts calculated according to
a standard curve.

2.3.4.2. ALP assay. ALP activity from cell-scaffold constructs (n =6)
was quantified by the specific conversion of p-nitrophenyl phos-
phate (pNPP, Sigma) to p-nitrophenol (pNP, Sigma). A buffer solu-
tion containing 0.2% (w/v) pNPP was added to the supernatant in a
96-well plate (Costar, Becton Dickinson). The enzyme reaction was
carried out at 37 °C for 45 min and then stopped by a solution con-
taining 2 M NaOH and 0.2 mM EDTA in distilled water. The absor-
bance of pNP formed was read at 405 nm in a microplate reader
(Synergy HT, BioTek Instruments, USA). A standard curve was
made using pNP values ranging from 0 to 0.2 mmol ml~.

2.4. Statistical analysis

All the quantitative results were obtained from triplicate sam-
ples. Data are reported as mean * standard deviation. For statistical
analysis, a one-way ANOVA test was performed, and the differ-
ences were considered statistically significant if p < 0.05.

3. Results

The functionalization of the starch-based materials was
achieved by combining wet-spinning with a calcium silicate solu-
tion as a coagulation bath in one-step approach. Different parame-
ters were used in order to optimize the production of those
materials for biological assays. This work was performed to evalu-
ate the incorporation of Si-OH groups into the fibre meshes on the
adhesion, differentiation and proliferation of hASC when cultured
under dynamic conditions.

3.1. Wet-spun fibre mesh scaffolds characterization

The wet-spun fibre mesh scaffolds were observed using a mag-
nifying glass, SEM and EDX elemental mapping of carbon (C), oxy-
gen (O), calcium (Ca) and silicon (Si) (Fig. 2).

From the images obtained from the magnifying glass and SEM,
one can see a uniform distribution of the fibres in both types of
scaffolds. Also, from SEM observation, the SPCL-Si material pre-
sents a smooth surface compared with SPCL. This assumption
was supported by optical profilometer analysis to evaluate the
eventual topographical changes on the surface of the fibres as a
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Fig. 2. Magnifying glass, SEM micrographs, X-ray elemental mapping and EDX analysis (inset) of SPCL and SPCL-Si fibre mesh scaffolds. X-ray elemental mapping of carbon

(C, red), oxygen (O, green), silicon (Si, blue) and calcium (Ca, yellow).

result of using two different coagulation baths, methanol and cal-
cium silicate solution. It is shown in the optical profile images
(Supporting Information, Fig. S1) that no significant topography
changes were detected, meaning that SPCL and SPCL-Si samples
show very similar topography. The calculated value of average
roughness (Ra) from 100x magnification images of SCPL sample
was Ra=177.58 £ 22.63 nm, which was slightly higher than that
obtained for the SPCL-Si sample, Ra =164.70 + 18.07 nm.

MUCT analysis indicated that SPCL and SPCL-Si scaffolds have a
typical fibre mesh structure, with a fibre diameter ~121.94
24.9 pm and 117.5 + 13.04 um, respectively. In terms of porosity,
SPCL fibre meshes presented 84.3% and SPCL-Si fibre meshes
~56%, where the pores are interconnected (data not shown). Also,
X-ray elemental mapping of Si and Ca indicated a uniform distribu-
tion of those elements on the surface of SPCL-Si fibre meshes when
using the calcium silicate solution (Fig. 2). EDX spectrum showed
the presence of Ca and Si elements in the SPCL-Si scaffolds,
although in the case of SCPL scaffolds those elements were not
detected (inset in the X-ray elemental mapping in the Fig. 2).

FTIR-ATR characterization was used to study the chemical inter-
action between the calcium silicate solution and SPCL solution. Fig. 3
shows an absorption peak at ~1725 cm™! for both materials, which
is attributed to the C=0 absorption band of PCL, but a decrease is ob-
served for the SPCL-Si. In the case of SPCL-Si fibre meshes, reflection

Reflectance

T T T T T 1
1800 1600 1400
Wavenumber (cm1)

Fig. 3. FTIR-ATR spectrum of (A) SPCL and (B) SPCL-Si fibre meshes scaffolds.

peaks at ~1020 and 1090 cm~! and a shoulder at ~1190 cm™! were
observed and can be related to siloxane bonds (Si-O-Si). At
~970 cm™! corresponds to Si-OH, typically observed in a silica gel.

3.2. In vitro assessment of wet-spun fibre mesh scaffolds

3.2.1. hASC morphology

SEM was used to examine the adhesion and morphology of
hASC cultivated on the fibre meshes. Fig. 4 presents SEM micro-
graphs of hASC on SPCL and SPCL-Si materials after 1, 7, 14 and
21 days of culture in o-MEM and osteogenic medium under static
and dynamic conditions.

The presence of Si—-OH groups induces a significant difference in
the distribution of hASC cultured in either «-MEM or osteogenic
medium under static and dynamic conditions.

Using a-MEM, the cells revealed lower adhesion and prolifera-
tion levels than cells cultured in osteogenic medium, in both mate-
rials. Cells cultured on SPCL-Si scaffolds, under all conditions,
exhibited a flat and elongated shape, as observed in Fig. 4. The cells
can be seen stretching and forming bridges from one fibre to an-
other on the scaffolds. Also, hASC were observed to spread within
the pores of the SPCL-Si fibre meshes. After 14 days in osteogenic
medium/dynamic culture, the hASC cultured on SPCL-Si formed a
dense cell layer covering the surface, whereas those cultured on
o-MEM formed only a monolayer that partially covers the surfaces.
After 21 days in o-MEM and osteogenic medium under dynamic
conditions, the SPCL-Si fibre mesh scaffolds were completely cov-
ered by a cell layer, while cells cultured on SPCL scaffolds pre-
sented only some filopodia between the fibres. Also, on SPCL
scaffolds it was possible to observe that some cells still present a
spindle-like shape, while others are starting to elongate. After 14
and 21 days, one can also observe that the cells have already pen-
etrated the interior of the scaffolds and, on SPCL-Si scaffolds, the
cells started to stretch and form bridges between the fibres. And
once more, for SPCL scaffolds it was not possible to observe the for-
mation of dense cell layer in any of the conditions studied.

3.2.2. hASC proliferation

hASC proliferation was assessed by quantifying cellular DNA, as
shown in Fig. 5.

A significantly higher (p < 0.05) cell proliferation was observed
in the case of SPCL-Si constructs compared with cell-seeded SPCL
scaffolds, which is supported by the proliferation factors where,
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Fig. 4. Morphology of hASC cultured on SPCL and SPCL-Si fibre meshes for 1, 7, 14 and 21 days in «-MEM and osteogenic medium under static and dynamic conditions,
observed by SEM. In all assays, SPCL and SPCL-Si fibre meshes without cells were used as controls. Scale bar corresponds to 200 pm.

at 7 days for o-MEM under dynamic conditions, the values were
6.4 for SPCL-Si and 0.7 for SPCL.

Results from day 1 indicate a low initial cell attachment. How-
ever, the proliferation factors indicate a high proliferation from day
1 to day 7, especially under dynamic conditions using osteogenic
medium, which compensates the initial lower cell attachment:
5.9 for SPCL and 7.9 for SPCL-Si, respectively. Concerning the influ-
ence of culture conditions, the DNA quantification values of the
cells cultured under dynamic conditions are higher than those cul-
tured under static conditions.

3.2.3. hASC differentiation

The ALP activity of hASC was assessed as an indicator of the
osteogenic differentiation. Fig. 6 shows the normalized ALP expres-
sion by hASC on the scaffolds up to 21 days.

The results obtained showed a higher ALP activity under
dynamic culture conditions in osteogenic medium, both for SPCL
and SPCL-Si fibre meshes, compared with static culture condi-
tions in o-MEM. However, in the case of SPCL-Si constructs,
the ALP values were lower than on SPCL constructs for all the
conditions.
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Fig. 5. Cell numbers assessment by DNA quantification of hASC seeded onto SPCL and SPCL-Si scaffoldsafter1, 7, 14 and 21 days in o-MEM and osteogenic medium under
static and dynamic conditions. *means that DNA quantification in SPCL-Si scaffolds was significantly higher than in SPCL scaffolds. **means that DNA quantification in SPCL
scaffolds in dynamic conditions was significantly higher in osteogenic medium than in o-MEM. *means that DNA quantification in SPCL scaffolds in o-MEM under static
conditions was significantly higher than in SPCL-Si scaffolds in o-MEM under dynamic conditions. (p < 0.05; n=6).
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Fig. 6. ALP activity of hASC in the various conditions on 1, 7, 14 and 21 days in «-MEM and osteogenic medium under static and dynamic conditions. *indicates that ALP
activity was significantly higher (p < 0.05) in cells cultured under dynamic conditions than under static conditions.(p < 0.05; n = 6). Values were normalized.

FTIR-ATR analysis performed on the SPCL and SPCL-Si fibre
meshes cultured with cells for 14 days under different conditions
revealed the presence of several groups, as shown in the Fig. 7.

The amide I, Il and Il bands were detected at ~1635cm™!,
~1532cm~! and ~1200 cm™! for SPCL and SPCL-Si fibre meshes
for all conditions, however the intensity of those bands differs be-
tween the materials. The presence of PO?{ groups was detected at
~1078 cm™! for SPCL-Si scaffolds for all conditions, although their
intensity differs. For SPCL materials, a phosphate band ~ at
1090 cm~! was also detected. However, the intensity of this band
in the SPCL materials was lower compared with the SPCL-Si scaf-
folds cultured in o-MEM.

Regarding the hASC differentiation, mineralization nodules
were observed in SPCL-Si constructs by SEM after 14 days in oste-
ogenic medium under static conditions (Fig. 8). The EDX analysis
confirmed that nodules were composed mainly of Ca and P. Also,
in the case of SPCL-Si cultured in osteogenic medium under dy-
namic conditions, the presence of Ca and P was detected, but their
intensities were lower. In the SPCL scaffolds, it was not possible to
observe the presence of mineralization nodules; neither P nor Ca

elements were detected (Fig. 8). These results are in agreement
with the Ca/P ratios obtained by EDX analysis. For SPCL-Si con-
structs cultured in o-MEM under static and dynamic conditions,
the Ca/P values were ~1.53 at day 14 (Fig. 9). The Ca/P ratios for
the SPCL constructs cannot be calculated, as the Ca and P ions were
not detected by EDX analysis.

In osteogenic medium under dynamic conditions, the Ca/P ratio
reached higher values between 2.9 and 3.1. An increase in the Ca/P
ratio as function of time was also observed in the osteogenic med-
ium. For 1 day of culture, the presence of P on the surface of SPCL-
Si was not detected, only Ca, and therefore the values of Ca/P ratio
were not included. For the controls, without cells, only the pres-
ence of P was detected, which can be due to the presence of this
element in both media, osteogenic and o-MEM, but the values
were very low. Concerning the SPCL materials cultured with hASC,
since EDX analysis did not detect the presence of phosphorous, the
Ca/P ratio was not calculated.

The measurement of the release of Si into the medium along the
culture time gives a possible explanation for hASC osteogenic dif-
ferentiation. Thus, the presence of Si in both samples along the cul-
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Fig. 7. FTIR-ATR spectra of SPCL and SPCL-Si without cells (1) and SPCL and SPCL-Si fibre meshes cultured with hASC for 14 days under the following conditions: (2) a-MEM
medium/static condition; (3) osteogenic medium/static condition; (4) a-MEM medium/dynamic condition; (5) osteogenic medium/dynamic condition.

ture time was quantified by EDX analysis and indirectly deter-
mines its release to the culture medium. In Fig. 10, a clear decrease
in Si (especially during the initial period) was observed in the
material as a function of time, demonstrating its release to the cul-
ture medium. The decrease in Si on the surface of the scaffolds cul-
tured under static conditions was lower than in those cultured
under dynamic conditions. Also, at day 1 and 7, one can observe
that the release of Si from materials cultured on basal medium
was lower.

4. Discussion

Using wet-spinning methodology, one is able to produce fibre
meshes at lower temperatures, which can enable the incorporation

of biological molecules. In previous work [16], it was demonstrated
that it was feasible to produce bioactive 3-D fibre meshes with Si-
OH functional groups on their surface, with a controlled pore size
and orientation, in a one-step procedure in a reliable and econom-
ical way. This simple process has the advantage that no further
coating or chemical modification of the fibre mesh is required to
render bioactive behaviour as in classic ceramic materials, such
as an organized arrangement of functional groups, silanol (Si-
OH) groups.

Recent studies [20-23] suggest that silicon is an essential min-
eral that promotes and maintains osteogenesis, since it is required
for the growth and production of mucopolysaccharides and colla-
gen in connective tissues. Moreover, silicon and calcium ions, act
on the skeletal system during its growth and development by reg-
ulating and activating genes in osteoprogenitor cells. Thus, the
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main aim of this work is to improve the in vitro osteogenic func-
tionality of cell-scaffold constructs, incorporating Si-OH groups,
by stimulating the osteogenic and/or matrix production using a
flow perfusion bioreactor. It was expected with this approach to
develop a bioactive scaffold able to promote bone regeneration.

Before the in vitro assessment, the wet-spun fibre mesh scaf-
folds were analysed by X-ray elemental mapping in order to ob-
serve the distribution of Si and Ca on the materials (Fig. 2). The
results obtained show a uniform distribution of the elements on
the surface of functionalized materials, SPCL-Si. Also, the presence
of P and Ca elements in SPCL-Si scaffolds was detected by EDX
analysis (inset in the X-ray elemental mapping in the Fig. 2), which
is in agreement with the data obtained from X-ray elemental map-
ping. These results indicate that, using a calcium silicate solution as
the coagulation bath, it is possible to functionalize 3-D structures
by wet-spinning.

The wet-spun fibre mesh scaffolds were also characterized by
FTIR-ATR analysis to evaluate the interactions between the organic
and inorganic phases after the precipitation of SPCL polymeric
solution into the coagulation bath, calcium silicate solution.
Fig. 3 shows that the components typical of PCL at 1725 cm ™!
(C=0) and 1170cm™! (C-0) decrease their intensity, while a
new shoulder band appeared at 1210 cm~' [15,24]. The decrease
in stretching vibrations of carbonyl and ether groups could be re-
lated to the incorporation of silicon from the precipitation of SPCL
polymeric solution in the coagulation bath calcium silicate solu-
tion. Also, several characteristic bands of sol-gel-derived silica
were observed. The presence of Si-OH groups comes from the
hydrolysed and incomplete polycondensation reaction of TEOS,
which can lead to the formation of hydrogen-bonding interactions
with carbonyls of PCL. For instance, the presence of a new shoulder
could be attributed to the stretching vibration of carbonyl groups
of PCL that could be bonded with the silanols groups issuing from

the calcium silicate solution. Several research works have demon-
strated these hydrogen-bonding interactions between carbonyls of
PCL and Si-OH of silica network in the hybrid materials [25-27]. In
these works, the inorganic-organic hybrids are prepared via an in
situsol-gel process of TEOS in the presence of PCL. In a previous
work [15], X-ray photoelectron spectroscopy was performed, and
those results are in accordance with the FTIR-ATR data presented
here, confirming the incorporation of Si-OH groups.

It is well known that the surface characteristics of a biomaterial
play a key role in modulating osteoblast adhesion, influencing cell
morphology and its proliferation and differentiation. Owing to the
importance of this interface, biomaterial surface and stem cells,
more research has been done trying to tailor 3-D structures with
chemical and biological signals for promoting a specific cellular
phenotype, instead of using biocompatible and biodegradable scaf-
folds seeded with appropriate stem cells, the common strategy
used in bone TE [28,29]. Looking at the SEM micrographs, the dif-
ferences in the surface between the SCPL-Si and SPCL scaffolds are
clear, and therefore it is important to clarify whether those differ-
ences have an impact on cell attachment and proliferation. For
that, the roughness of both materials was measured, where the
roughness of SPCL was slightly higher than that obtained for
SPCL-Si samples. However, the values in both samples were in
the same order of magnitude, suggesting that using a calcium sili-
cate solution as a coagulation bath did not produce significant
changes in topography as shown by optical profilometry (Support-
ing Information, Fig. S1). Thus, the results obtained suggest that it
is the surface chemistry of the scaffolds and not the roughness that
influences cell differentiation.

In general, the outcomes from the in vitro assessment of SPCL-
Si wet-spun fibre mesh scaffolds are better than those reported for
the control, non-functionalized scaffolds. However, the results
obtained demonstrate that, besides the scaffold composition, the
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Fig. 9. Ca/P ratios determined by EDX of hASC-SPCL-Si constructs after 7, 14 and 21 days of culture in a-MEM and osteogenic medium under static and dynamic conditions.

Data are shown as mean + standard deviation from n = 3 samples.

culture conditions (static and dynamic) and culture medium (o-
MEM and osteogenic medium) produce significant differences in
the cell behaviour.

The morphology of hASC observed by SEM showed that cells on
SPCL-Si scaffolds, under all conditions, exhibited a flat and elon-
gated shape, typical of mature osteoblasts [30]. In the dynamic cul-
ture, the cells penetrated the SPCL-Si scaffolds and formed a dense
matrix, which demonstrates that the constant fluid flow provides
an adequate distribution of nutrients and better removal of meta-
bolic waste. All of these are fundamental for higher cell prolifera-
tion, as previously demonstrated by other studies [9,11,12]. Also,
the formation of filopodia into the pores of the SPCL-Si scaffolds
is in agreement with the results of the study by Haimi et al. [31],
where the hASC are combined with bioactive glass-based scaffolds.
For SPCL scaffolds, some cells presented a spindle-like morphology
typical of hASC [30], while other cells were starting to elongate and
to acquire a flat shape.

Cell proliferation results by DNA quantification indicate that
SPCL-Si fibre meshes with adequate porosity are able to support
and sustain hASC proliferation under dynamic conditions using
osteogenic medium (Fig. 5). These results can be explained by
the release of Si to the culture medium. Furthermore, the presence
of osteogenic supplements, namely ascorbic acid, dexamethasone
and B-glycerophosphate, in the culture medium can also have a
certain influence in those results. Previous studies [21,32,33] have
shown increased proliferative activity in materials containing Si.
Concerning the influence of osteogenic factors in the medium,

especially ascorbic acid, it has been demonstrated that they act
as positive modulators of hASC proliferation [34].

Cells cultured using the flow perfusion bioreactor revealed in-
creased proliferation, which can be explained by a better distribu-
tion of oxygen and nutrients due to the constant flow and the
mechanical stimuli provided by the bioreactor. This increase has
been shown in previous studies, using a flow perfusion bioreactor
[9,11,12]. The same behaviour was observed by Frohlich et al. [35]
using hASC and a perfusion bioreactor, which supports the present
results. The higher value of DNA content in SPCL samples cultured
on osteogenic medium/dynamic conditions, namely at day 7,
showed a significant higher cell number compared with the SPCL
samples cultured on basal medium/dynamic conditions (Fig. 5).
This can be related to different stages of differentiation of hASC
when cultured under dynamic conditions, since the bioreactor pro-
vides a mechanical stimulation to cells via shear stress induced by
the medium flow. During the last 2 weeks of culture, under static
conditions using osteogenic medium the proliferation decreased
for SCPL-Si scaffolds, which is supported by the proliferation fac-
tors. Also, these results are in agreement with the observation by
SEM showing the formation of mineralized nodules, and with the
analysis by EDX confirming the presence of P and Ca (Fig. 8). These
results are in agreement with the fact that, when the cells start to
differentiate, their proliferation rate decreases [36].

The evaluation of cell differentiation and mineralization was
characterized using different analytical techniques, namely, ALP
activity, FTIR-ATR and EDX.
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For ALP activity in Fig. 6, it can be observed that at day 1 the
activity was lower, indicating that the osteogenic differentiation
of the cultured cells does not occur in the first 24 h. These results
are in agreement with the results from EDX analysis, since the P
element was not detected on the surface of SPCL-Si after 1 day of
culture. From day 1 to day 7, an increase in ALP activity was ob-
served for both materials under all culture conditions. Thus, it
could be an indication of the beginning of hASC differentiation.
Also, the results showed a significantly (p <0.05) higher activity
under dynamic culture conditions in osteogenic medium compared
with the static conditions in a-MEM, for both SPCL and SPCL-Si fi-
bre meshes. These results are supported by other studies with
hASC [35]. Concerning the culture medium, some research works
[37,38] showed that the addition of osteogenic supplements to
hASC induced rapid osteogenesis, detected by the increased
expression of ALP. Also, it is believed [39] that perfusion culture
provides better micro-environmental conditions for the stem cells
to populate and differentiate into an osteogenic pathway. The ob-
served increase in the ALP activity under dynamic conditions for
SPCL and SPCL-Si scaffolds in both culture media can be related
to the continuous and larger supply of culture media by the biore-
actor, which allows a more rapid and efficient refresh of exhausted
cellular metabolites during hASC mitosis and differentiation. At the

same time, dynamic culture conditions provide mechanical stimu-
lus to the cells via the shear stresses induced by the flow perfusion.
However, in the case of SPCL-Si constructs under static and dy-
namic conditions, the ALP present lower values, which may be
associated with the Ca and Si ions present in the coagulation bath,
which may decrease the activity of ALP of the cells, thus delaying
the differentiation process. This delay, however, does not compro-
mise the full osteogenic differentiation of the hASC, as demon-
strated by the results showing the occurrence of mineralization
after 14 days of culture. The functionalized surface of the SPCL-Si
scaffolds using a calcium silicate solution can delay the osteogenic
differentiation, owing to the presence of Ca ions, and lead to lower
ALP expression, as ALP is an early osteogenic differentiation marker
[40]. The same behaviour was observed in different studies [40,41],
where the ALP expression was higher in untreated samples than in
samples coated with a calcium phosphate layer. Also, another work
[42] reported that calcium negatively regulates the net release of
ALP activity when using human osteosarcoma (SaOs-2) cells. As
ALP analysis is a controversial technique, mainly in bioactive mate-
rials, future experiments are needed to understand better the effect
of the presence of Si and Ca ions on the ALP expression. Besides
that, there are several variations between in vitro and in vivo
microenvironments that are mainly due to the difference between
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the dynamic of body fluids in vivo and the static microenviroment
in vitro.

FTIR-ATR analysis on cell-seeded constructs revealed some
differences between SPCL and SPCL-Si fibre meshes (Fig. 7).
The presence of amide bands in both constructs for all the con-
ditions can be related to the protein matrix formed. The most
prevalent change observed was the presence of a well-defined
phosphate band at 1078 cm~! on SPCL-Si scaffolds cultured with
cells for all conditions, especially in the case of o-MEM (Fig. 7,
condition 2). This is indicative of the formation of a mineralized
matrix due to the osteogenic differentiation of hASC promoted by
the presence of Si-OH groups. In the case of SPCL scaffolds, a
phosphate band was also detected at ~1090 cm™!, although the
intensity is significantly lower than for SPCL-Si materials
(Fig. 7). Also, this band is difficult to identify because of overlap-
ping of bands of starch, i.e., the bands related to -C-0-C- of gly-
cosidic bonds typically from starch. The presence of this band in
the SPCL materials can be related to the deposition of residual
amounts of phosphorous present in both culture media, as it
can be seen in the spectra that its intensity differs between the
static (conditions 2 and 3) and dynamic conditions (conditions
4 and 5). This assumption is supported by SEM observation and
EDX analysis (Fig. 8), where it was not possible to observe the
formation of mineralization nodules in SPCL materials as well
as to detect the presence of P.

For SPCL-Si scaffolds, the mineralization nodules were observed
after 14 days under osteogenic medium/static condition (Fig. 8).
These results demonstrate clear differences in the formation of
mineralization nodules between SPCL and SPCL-Si scaffolds. Once
more, these results can be related to the possible release of Si ions
to the medium (Fig. 10). The EDX spectra confirmed the presence of
P and Ca elements on the mineralization nodules. In contrast, in
the cultured scaffolds under dynamic conditions, the presence of
mineralization nodules was not observed. However, the FTIR spec-
tra (Fig. 7) and EDX spectra (Fig. 8) showed the presence of phos-
phate bands and P in those materials under dynamic conditions,
which indicates that the mineralization occurred even though
the presence of mineralization nodules was not observed. The
non-existence of the mineralization nodules may be explained by
the flow provided by the bioreactor, which does not allow high
mineral depositions. For instance, Gough et al. [43] obtained simi-
lar results with 58S bioactive glass scaffolds. EDX analysis of SPCL
scaffolds revealed the non-existence of P and Ca ions on these
materials related to the non-existence of mineralization nodules
(Fig. 8).

From all these data, one can speculate that after 14 days of cul-
ture in osteogenic medium, the cells cultured on SPCL-Si scaffolds
are able to differentiate for producing a mineralized extracellular
matrix.

In the first 24 h of culture, the presence of P on the surface of
SPCL-Si was not detected, which indicates that osteogenic differ-
entiation did not occur (Fig. 9). For SPCL-Si fibre meshes in o-
MEM after 14 and 21 days, in both static and dynamic conditions,
the Ca/P ratios are very close to those found for the hydroxyapatite
present in natural bone (1.67) [44] (Fig. 9). Oh et al. [39] demon-
strated that bioactive scaffolds cultured with hASC under dynamic
conditions show similar results to those obtained in the present
work. These results demonstrate that the supporting capacity of
Si-OH groups incorporated into the SPCL scaffolds can promote
differentiation of hASC into osteoblasts and produce a mineralized
matrix. Moreover, these results are in agreement with the percent-
age of Si determined by EDX analysis (Fig. 10). A decrease in Si with
the culturing time, in either a-MEM or osteogenic medium, was
observed, which indicates that it is being released into the culture
medium and therefore influences the differentiation of the cells
(Fig. 10).

Thus, according to the present results, the presence of osteo-
genic factors in the culture medium may not be strictly necessary
to obtain osteogenic differentiation of hASC. Also, this is in agree-
ment with the detection of phosphate bands in the FTIR spectra
for scaffolds cultured in «-MEM (Fig. 7, condition 2). The Ca/P ra-
tios in SPCL-Si scaffolds reached higher values in osteogenic med-
ium under dynamic culture, which is related to the presence of
osteogenic factors in the culture medium and the flow rate used
in the bioreactor, which plays an important role on cell prolifer-
ation and differentiation. Also, a possible explanation for this
can be the affinity of the Si-OH to bind calcium ions. Once more,
these results are in agreement with those obtained from the ALP
activity (Fig. 6). Under dynamic culture in osteogenic medium,
the values of the Ca/P ratio and ALP activity are higher, indicating
that the mineralization can occur mainly in the SPCL-Si scaffolds.
For the SCPL-Si in o-MEM, controls without cells, the presence of
P was not detected, which can be a positive indication that the P
detected in cell-cultured SPCL-Si constructs comes from mineral-
ized matrix produced by hASC. However, since this work is con-
sidered a first step towards the development of high-
performance materials for bone regeneration, more biological
characterization is needed, namely, gene expression and histolog-
ical analysis, for osteocalcin, osteopontin and collagen type I, to
understand the influence of Si and Ca ions, either individually
or combined, in osteogenic differentiation. Overall, the results
demonstrated that polymeric wet-spun fibre meshes incorporat-
ing bioactive functional groups, Si-OH, has potential as a support-
ing matrix for hASC osteogenic differentiation. This methodology
allowed the development of 3-D wide-net mesh by assembling
these thin wet-spun fibre meshes, and allowed their structure
to be adjusted according to the location of implantation and size
of bone defect.

5. Conclusions

The present study has demonstrated the chemical and biolog-
ical importance of the presence of silicon in bone TE strategies.
The combination of wet-spinning technology and a calcium sili-
cate solution allows a bioactive starch-based scaffold with Si-OH
functional groups to be developed. This simple methodology
avoids the use of calcium phosphate coating or chemical modifi-
cation of the fibre mesh to obtain a bioactive scaffold. Osteo-
genic development of the hASC under the presence of Si-OH
groups was considerably up-regulated by dynamic cell culture,
flow perfusion, compared with static culture, which suggests
that the use of these functionalized scaffolds may eliminate
the need to use osteogenic supplemented medium. During
14 days of culture, SPCL-Si scaffolds sustained hASC proliferation
and differentiation into the osteogenic lineage. These data sug-
gest the potential of SPCL scaffolds functionalized with Si-OH
groups seeded with hASC and cultured under flow perfusion to
be considered as a promising biomaterial for bone tissue replace-
ment. Moreover, the favourable in vitro results presented here
highlight the need to pursue further investigation on the effects
that Si and Ca have on cellular response such as cell differentia-
tion, cell migration and cell adhesion. The important of this
investigation relies on the ability to engineer smart bioactive
materials with tailored ion release kinetics and controlled bio-
logical response in the relevant physiological environment of
bone tissue.
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A. Figures with essential colour discrimination

Certain figures in this article, particularly Figs. 1 and 2, are dif-
ficult to interpret in black and white. The full color images can be
found in the on-line version, at http://dx.doi.org/10.1016/
j.actbio.2012.05.025.
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