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Summary  16 

Different patterns of sperm precedence are expected to result in specific mating costs and benefits for 17 

each sex, generating different selection pressures on males and females. However, most studies concern 18 

species with mixed paternity or last male sperm precedence, neglecting species with first male sperm 19 

precedence, in which only the first mating is effective.  20 

Here, we measured costs and benefits of multiple mating for both sexes of the spider mite Tetranychus 21 

urticae. First, we assessed the stability of the sperm precedence pattern, by mating females to one, two 22 

or several males, immediately after the first mating or 24 hours later. We found complete first male 23 

precedence, independently of the mating interval and the number of matings. Females paid a cost of 24 

polyandry, as multiply-mated females laid fewer eggs than once-mated females. However, while first 25 

males had reduced survival when exposed to an intermediate number of virgin females, second males 26 

paid no additional costs by matings with several mated females. Moreover, by mating multiply with 27 

mated females, males decreased the total number of offspring sired by first males, which suggests that 28 

these matings may entail a relative benefit for second males, despite being ineffective. 29 

Our results show that complex costs and benefits may arise in males in species with first male 30 

precedence. How these costs and benefits affect the maintenance of selection for polyandry remains an 31 

open question.  32 

 33 
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Introduction 36 

Multiple matings are prevalent in internally fertilizing species (Simmons, 2001). However, this 37 

behaviour is expected to entail negative consequences for both sexes, such as increased risk of predation 38 

and energy expenditure (G Arnqvist & Nilsson, 2000; Göran Arnqvist & Rowe, 2005). Consequently, 39 

for multiple mating to be selected, the reproductive advantage gained by this behaviour should to be 40 

superior to the costs incurred. 41 

Polyandry, i.e., multiple mating in females with different males within a breading season (G Arnqvist 42 

& Nilsson, 2000; Taylor, Price, & Wedell, 2014), is expected to be selected whenever females obtain 43 

direct benefits, such as increased fecundity and survival with each mating via nuptial gifts or nutritious 44 

ejaculates. For instance, in the bruchid beetle Callosobruchus maculatus, substances in the seminal 45 

fluids lead to an increase in the number of offspring produced (Eady, Wilson, & Jackson, 2000). 46 

Alternatively, but not exclusively, females can mate multiply to increase the quality or diversity of their 47 

offspring, in which case their benefit is indirect (Kvarnemo & Simmons, 2013; Snook, 2014). This has 48 

been observed, for example, in the bumble bee Bombus terrestris, in which polyandry can increase 49 

colony resistance to parasites by maximizing the chances that at least some individuals survive (Schmid-50 

Hempel & Baer, 1999). 51 

From a male’s perspective, the benefits of multiple mating are quite straightforward, assuming that 52 

more matings result in more offspring production. Yet, polyandry, an expected outcome of increased 53 

male mating rate, can result in the offspring of a single female being shared by several males. As a 54 

result, males have evolved adaptations to sperm competition, such as harassment, altered male genitalia 55 

and toxic ejaculates, so as to sire a higher share of offspring of each female (Simmons, 2001). This, in 56 

turn, can be costly for females, decreasing their fitness (e.g., Chapman et al. 1995). Consequently, the 57 

balance between costs and benefits obtained with each mating is probably not the same for both sexes 58 

(Bateman, 1948). This imbalance can give rise to sexual conflicts, in which one sex employs 59 

reproductive tactics to enforce matings while the other resists them, depending on which sex will benefit 60 

the most from each mating (Göran Arnqvist & Rowe, 2005).  61 
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From the interaction between adaptations that have evolved in males and females to increase their 62 

reproductive success, emerges a pattern of sperm precedence. Such patterns may be more beneficial for 63 

one sex than for the other, thereby generating different selection pressures on each sex. In species with 64 

mixed sperm precedence, in which paternity is shared by several males, selection in males should favour 65 

increased mating frequency as a result of offensive and defensive adaptations to sperm competition 66 

(Mark Ridley, 1989) but for females the benefits obtained from each additional mating are not as 67 

straightforward (Göran Arnqvist & Rowe, 2005; Bateman, 1948). Indeed, females may obtain genetic 68 

benefits from a more diverse or fit offspring, but may pay the cost of excessive matings, which can lead 69 

to sexual conflict over mating rate. However, under complete first male precedence, in which only the 70 

first mating of a female is effective, genetic benefits cannot be obtained.  Thus, in the absence of direct 71 

benefits, selection in these species should favour monandry, as both sexes are expected to invest all 72 

resources in copulations involving virgin females only (Thomas, 2011), thereby limiting the scope for 73 

sexual conflict (Hosken, Stockley, Tregenza, & Wedell, 2009). However, monandry may be imposed 74 

by males on females, as a result of evolved defensive adaptations against sperm competition. Once 75 

monandry is achieved, selection for this enforcement may be relaxed, potentially leading to polyandry 76 

being restored. In addition, females may be selected to gain the opportunity to choose the sperm they 77 

will use to sire their offspring (Dougherty, Simmons, & Shuker, 2016), and second males may be 78 

selected to obtain a share of the females’ offspring (offensive traits). For instance, it has been suggested 79 

that second males may increase their relative reproductive success from matings with mated females 80 

without obtaining any paternity share, by displacing or killing the sperm of the first male inside the 81 

female (Harshman and Prout 1994, Macke et al. 2012). All these patterns suggest that the sperm 82 

precedence observed in a species is not necessarily evolutionarily stable (Dougherty et al., 2016). 83 

Furthermore, in several species, the pattern of sperm precedence has been shown to vary according to 84 

multiple ecological factors, such as the number of matings (Zeh & Zeh, 1994), the interval between 85 

mating events (Bullini, Coluzzi, & Bianchi Bullini, 1976), the effectiveness of the first mating 86 

(Weldingh, Toft, & Larsen, 2011), or differences in male traits (e.g., size) (Bissoondath & Wiklund, 87 

1997). 88 
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Because of the lability of this pattern, it is important to know (a) how it translates into cost 89 

and benefits for both sexes and (b) if it is maintained under different ecological conditions. 90 

Nevertheless, most of the research has been done in species with mixed or last male sperm precedence 91 

(Simmons, 2001) and empirical studies addressing costs and benefits for both sexes in species with first 92 

male precedence are remarkably scarce (but see Fisher et al. 2013; Boulton and Shuker 2015, 2016).  93 

Here, we study the consequences of mating for both sexes in the two-spotted spider mite, 94 

Tetranychus urticae. Earlier studies suggest that in this species only the first copulation of a female is 95 

effective (Helle, 1967). This leads to the expectation that males should only mate with virgin females 96 

to avoid unnecessary costs. Accordingly, males actively guard juvenile quiescent females and mating 97 

occurs as soon as females moult into virgin adults (Potter, Wrensch, & Johnston, 1976), a behaviour 98 

that is consistent across species with first male sperm precedence (M. Ridley, 1989). In addition, when 99 

given the choice between mated and virgin females, males, prefer to mate with virgins, basing their 100 

decision upon volatiles and chemical trails (Oku, 2010; Rodrigues, Figueiredo, Varela, Olivieri, & 101 

Magalhães, 2017). Nevertheless, mated females are often observed mating (Clemente, Rodrigues, 102 

Ponce, Varela, & Magalhães, 2016; Oku, 2010). Here, we provide a comprehensive account of potential 103 

costs and benefits of polyandry for both sexes in spider mites. First, we performed paternity tests, using 104 

a recessive mutation that codes for resistance to a pesticide as a genetic marker, in order to describe the 105 

pattern of sperm precedence. To account for the ecological lability of the pattern sperm precedence, we 106 

varied the number of matings and the interval between mating events. We then measured the fecundity 107 

and survival of females that re-mated at different time points, to assess potential costs or benefits of 108 

polyandry for females. In addition, we analysed differences in male survival in the presence of different 109 

numbers of virgin or mated females to assess potential costs of multiple mating for first and second 110 

males, respectively. Finally, we compared the total number of offspring sired by first males mated to 111 

females with different mating status, to assess the potential benefits for second males.   112 

  113 
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Materials and Methods 114 

Spider mite populations, rearing conditions 115 

To study the costs of multiple mating in males, we used a population collected in Carregado, Portugal, 116 

established at the University of Lisbon in 2010 from approximately 300 individuals (TuTOM). To study 117 

the other traits, we used the EtoxR strain, resistant to etoxazole (Van Leeuwen et al., 2012), and the 118 

LondonS strain (Grbić et al., 2011), susceptible to the same pesticide, both established at the University 119 

of Lisbon in 2013 from approximately 2000 individuals. Etoxazole is a pesticide that interferes with 120 

chitin synthesis, affecting spider mite embryos and juvenile stages at the time of hatching or ecdysis 121 

(i.e., at the quiescent stage; Van Leeuwen et al. 2012). In the EtoxR strain, resistance to Etoxazole is 122 

recessive and conferred by a single chitin synthase 1 (CHS1) amino acid change (Van Leeuwen et al., 123 

2012). We used pesticide resistance as a marker for paternity.  124 

All populations followed an antibiotic treatment to eliminate symbionts, using a protocol adapted 125 

from Breeuwer (1997). Prior to the experiment, we confirmed that resistance was fixed in the EtoxR 126 

strain and absent in the LondonS strain, following a protocol adapted from Van Leeuwen et al. (2012). 127 

We compared the fitness of females mated with resistant or susceptible males, to account for potential 128 

male genotype effects, and no significant differences were found (Fig. S1). 129 

All spider-mite populations were reared in large numbers (>2000) on bean plants (Phaseolus 130 

vulgaris, Fabaceae, var. Enana; Germisem Sementes Lda, Oliveira do Hospital, Portugal), under 131 

controlled conditions (25°C, photoperiod of 16L: 8D). 132 

Experimental Setup 133 

Mating protocol 134 

Randomly selected virgin females from the EtoxR strain were allowed to mate once, twice or multiple 135 

times (O, T and M, respectively) and the mating interval between the first and subsequent matings was 136 

either 0 or 24 hours (re-mated immediately, I or re-mated later, L, respectively; Fig. 1a). In treatments 137 

with two or more matings, females mated either first with a resistant and then with susceptible males, 138 
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or the opposite. Thus, these females were allocated to 5 different treatments: O, TI, MI, TL and ML. A 139 

description of these treatments is provided in Figure 1a. Briefly, EtoxR quiescent females were isolated 140 

for 24 hours on leaf discs on water-saturated cotton without males. Once they became adult (one day 141 

later), groups of 5 females were placed with 5/6 susceptible - or resistant - males on 0.8 cm2 leaf discs. 142 

The patches were observed for 2 hours and once a female had successfully mated, it was transferred to 143 

a new patch, either empty or with males of the other strain, in the same proportion (5 females: 6 males). 144 

Half of the females placed with males on the second patches were observed for two more hours and 145 

isolated when mated (TI). The other half was left unobserved on the patch with males for 24 hours (MI), 146 

which, in this species, is a sufficiently large time interval to ensure the occurrence of multiple matings 147 

(authors Pers. Obs., Krainacker and Carey 1989; Magalhães et al. 2007). The females left alone after 148 

the first mating on the first day were either left alone for one more day (O) or transferred to patches 149 

with males of the alternative strain. Again, half the females were observed for 2 more hours and isolated 150 

if mated (TL) and the other half was left unobserved on the patch with males for 24 hours, thus allowing 151 

for multiple matings (ML). After mating, two- to three-days old females were isolated on a 2.55 cm2 152 

leaf disc placed on water-soaked cotton, in order to measure the life-history traits mentioned below. To 153 

maximize the effectiveness of the first mating, we (a) isolated males prior to testing them, (b) limited 154 

their copulations to 5 females, a value below their daily reproductive limit (Krainacker & Carey, 1989) 155 

and (c) discarded first matings interrupted by other individuals on the patch.  Due to excessive 156 

experimental effort, this experiment was done on 22 separate days, all treatments being represented at 157 

each day. 158 

Data Collection 159 

Effect of multiple mating on offspring number and paternity 160 

We tested whether the number of matings and the interval between matings affected offspring number, 161 

indicating potential costs or benefits of mating multiple times for females. Moreover, we assessed the 162 

paternity of that offspring, as a measure of potential benefits for first or second males. For this purpose, 163 

females isolated on leaf discs were transferred every three days to a new leaf and the eggs laid on the 164 
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old leaves were counted. Daily fecundity was measured as the total number of eggs laid per female 165 

divided by the number of days the female was alive (Fig. 1b). To assess paternity, the eggs laid by the 166 

isolated females were allowed to develop until they reached the first juvenile stage (three days after 167 

female transfer to a new disc), then leaf discs were transferred to water-soaked cotton with diluted 168 

etoxazole (500 ppm). Six days later, the number of adult daughters, adult sons and dead juveniles on 169 

each leaf disc was recorded (Fig. 1b). Spider mites are haplodiploid, producing haploid sons, which 170 

result from unfertilized eggs, and diploid daughters, stemming from fertilized eggs (Helle & Sabelis, 171 

1985). Therefore, the number of alive daughters and dead juveniles indicate, respectively, the number 172 

of offspring sired by resistant and by susceptible males. The survival of sons should not be affected by 173 

pesticide application since all females used were resistant to etoxazole and sons only inherit the genetic 174 

material of their mothers. Note however, that natural death in the quiescent stage may be confounded 175 

with death by pesticide exposure. Yet, because this occurs in all treatments, including the once-mated 176 

treatment that serves as control, the differences between treatments are a true measure of paternity share, 177 

excluding natural death at the quiescent stage. In total, we analysed the daily fecundity of 485 females 178 

and assessed the paternity of offspring from 377 females.  179 

Effect of multiple mating on male and female survival 180 

To determine whether mating multiply benefited females by increasing their survival, we tested whether 181 

female survival varied with the number of matings and the interval between matings. To this aim, the 182 

same females used to assess paternity and daily fecundity were used to measure female survival (Fig. 183 

1b). The survival of mated females was followed daily after female isolation on a 2.55 cm2 leaf disc 184 

placed on water-soaked cotton.  In total, we analysed the survival of 485 females. 185 

A different experiment was performed to measure the costs of mating in terms of survival in 186 

first and second males. To this aim, males and females were isolated separately at the quiescent stage, 187 

to control their age and ensure virginity prior to the experiment. When these individuals became adults 188 

(circa 24 hours later), groups of ten females were either left isolated (virgin – V) or placed with 15 189 

males (mated – M). The latter were left with the males for 24 hours to ensure the occurrence of multiple 190 
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matings (authors Pers. Obs., Krainacker and Carey 1989; Magalhães et al. 2007). The next day, focal 191 

virgin one-day old males were placed on a leaf circle with the previously isolated females: Males were 192 

allocated to leaves with either 1, 5 or 20 virgin females (V1, V5, V20), which allowed testing costs for 193 

first males, or with 1, 5 or 20 mated females (M1, M5, M20), thereby testing for potential costs in 194 

second males. To normalize densities across treatments, patch size varied according to the number of 195 

individuals (0.38 cm2, 2.55 cm2 or 9.1 cm2 for patches receiving 1, 5 or 20 females, respectively). The 196 

focal male was then transferred daily to a new patch with the same number of (mated or virgin) females 197 

in every treatment except for the ones with 20 females. In this last treatment, as male mating capacity 198 

decreases with age (Krainacker & Carey, 1989), from the third day onwards, the focal male was placed 199 

with 12, instead of 20 females (size of the patch: 6.25cm2). Every day until death, male survival was 200 

recorded. In total, the survival of 180 males was analysed. Due to excessive experimental effort, and 201 

the very high number of females required for each replicate, this experiment was carried out on 66 202 

separate days. 203 

Potential benefits of ineffective matings for males 204 

Mating with mated females may provide a relative increase in the fitness of second males, 205 

despite first male sperm precedence. For example, by mating with mated females, males may displace 206 

or kill the sperm inside the female and thereby increase their relative reproductive success (Macke et 207 

al. 2012). Here, we tested whether multiple matings could reduce the genetic contribution of first males. 208 

The total number of daughters (i.e. male genetic contribution to the next generation) sired by first males 209 

mated to females with different number of matings and mating intervals, was compared. The same 210 

females used to assess paternity and daily fecundity were used to measure this trait (Fig. 1b). Because 211 

the aim was to study lifetime fecundity, females who died due to artificial causes (drowning in water-212 

soaked cotton) were excluded from the analysis. In total, we analysed the total number of daughters 213 

produced by 427 females. 214 

Statistical analyses 215 
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All analyses were carried out using the R statistical package (v. 3.0.3). Maximal models were simplified 216 

by sequentially eliminating non-significant terms from the highest- to the simplest-order interaction, 217 

with the highest p-value to establish a minimal model (Crawley 2007; see Table S1), and the 218 

significance of the explanatory variables was established using chi-squared tests, in the case of discrete 219 

distributions or Wald F tests, in the case of continuous distributions (Bolker et al. 2008; see Table S2). 220 

A posteriori contrasts with Bonferroni corrections were done to interpret the significant effect of factors 221 

with more than two levels (glht, multcomp package): comparisons were done between treatments with 222 

single matings, or single females in the case of male survival, and all other treatments (Table S3).  223 

To analyse the effects of mating on female survival, daily fecundity, total number of daughters and 224 

offspring paternity, the mating treatment (i.e. 0: once-mated, TI: twice-mated immediately, MI: 225 

multiply-mated immediately,  TL: twice-mated later, ML: multiply-mated later) was fit as fixed 226 

explanatory variable, whereas day and male type order (female mated first with a resistant and then 227 

with susceptible males, or the opposite) were fit as random explanatory variables.  228 

 To analyse the effects of mating on male survival, the female status (i.e., M: mated; V: virgin) and the 229 

number of females on each patch (1, 5, 20) were fit as fixed explanatory variables, and day was fit as a 230 

random explanatory variable.  231 

Effect of multiple mating on offspring number and paternity 232 

To analyse the proportion of offspring sired by the first male, we redistributed the data of offspring 233 

survival into two variables called contribution of the 1st male (1M) and contribution of the second male 234 

(2M) to offspring. 1M corresponds to the number of dead juveniles or the number of alive daughters, 235 

depending on whether the first male was susceptible or resistant, 2M corresponds to the number of alive 236 

daughters or the number of dead juveniles, depending on whether the first male was susceptible or 237 

resistant. These parameters were computed using the function cbind, with 1M, 2M and the number of 238 

sons as arguments. Since the model was greatly over-dispersed, we used a generalized linear mixed 239 

model with a beta-binomial error distribution and added the term ziformula=~1 to the model 240 

(glmmTMB, glmmTMB package) (Brooks et al., 2017).  241 
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Daily fecundity per female was transformed to improve normality (Box-Cox transformation; 242 

Crawley 2007) and subsequently analysed using linear mixed-effect models (lmer, lme4 package).  243 

Effect of multiple mating on male and female survival 244 

Male and female survival were analysed using a Cox proportional hazards mixed-effect models (coxme, 245 

coxme package).  In the analysis of male survival (MS), because the interaction between the fixed 246 

factors was significant, we analysed separately each level of female status for the effect of female 247 

number.  248 

Potential benefits of ineffective matings for males 249 

The total number of daughters sired by the first male was analysed using the variable “contribution of 250 

the 1st male” (1M). This parameter was analysed using a model with negative binomial distribution 251 

(glmer.nb, lme4 package) to account for data overdispersion.  252 

 253 

Results 254 

Effect of multiple mating on offspring number and paternity 255 

Overall, there was no significant effect of the mating treatment (Χ2
4=1.411, P=0.842) on the proportion 256 

of offspring sired by the first males (Fig. 2a). Therefore, first male sperm precedence is virtually 257 

complete. This also indicates no differences in sex-ratio across treatments. However, mating treatment 258 

affected daily fecundity significantly (F4,389.95=8.633, P<0.001). Contrast analyses revealed that females 259 

that mated multiple times 24h after their first mating had significantly lower fecundity compared to 260 

once-mated females, while females from all other treatments laid the same number of eggs (O vs TI: 261 

Z=-0.025, P =1.00, O vs TL: Z=-0.725-, P=1.00, O vs MI: Z = -1.976, P = 0.193 and O vs ML: Z=-262 

4.151, P<0.001; Fig. 2b, Table S3). 263 

Effect of multiple mating on male and female survival 264 
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The mating treatment the female was subjected to affected significantly the survival of females 265 

(Χ2
4=10.899, P=0.0277). However, no significant differences were found when comparing all 266 

treatments to the once-mated control (O vs TI: Z=-0.203, P =1.00, O vs TL: Z=1.235, P=0.867, O vs 267 

MI: Z = 1.379, P = 0.671 and O vs ML: Z=-1.719, P=0.343; Fig. 3a). As for males, their survival was 268 

significantly affected by the interaction between female status and the number of females on each patch 269 

(Χ2
2=7.198, P=0.027). Indeed, males placed with virgin females survived less in the presence of 5 270 

females than in presence of 1 female per day (V1 vs V5:  Z=2.349, P=0.038; V1 vs V20: Z=0.353, 271 

P=1.00; Fig. 3b, Table S3). However, no significant differences in survival were observed when males 272 

were placed with mated females (Χ2
2=0.497, P=0.78; Fig. 3c). 273 

Potential benefits of ineffective matings for males 274 

A significant effect of mating treatment was found for the total number of fertilized offspring sired by 275 

the first male (Χ2
4= 15.956, P=0.003). Indeed, multiply-mated females with an interval of 24 hours 276 

between first and subsequent matings produced fewer fertilized offspring, compared to once mated 277 

females (O vs ML: Z= 3.174, P= 0.006; Fig. 4, Table S3). This suggests that second males benefit by 278 

mating with mated females. However, females belonging to all other treatments produced the same 279 

number of fertilized offspring than once-mated females (O vs TI:  Z=-0.024, P=1.00, O vs TL:  Z=-280 

0.315, P=1.00; O vs MI: Z= -0.367, P=1.00; Fig. 4, Table S3).  281 

  282 

Discussion 283 

Our study revealed that nearly all fertilized offspring was sired by the first male, independently of the 284 

mating interval and the number of matings. In addition, a decrease in fecundity, but not in survival, was 285 

found in females that had multiple mating opportunities after an interval of 24 hours between the first 286 

and subsequent matings. Males, however, suffered increased costs of mating when placed with 5 virgin 287 

females daily, but not when placed with mated females, revealing costs for first, but not for second 288 

males. In addition, first males produced fewer daughters when the females they mated with re-mated 289 

with other males.  290 
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We cannot disentangle complete, to nearly complete, first male sperm precedence, because natural death 291 

in the quiescent stage may be confounded with death by pesticide exposure. Thus, there is a non-null 292 

threshold of detection for fertilization by second males. Still the contribution of second males to siring 293 

offspring in these conditions, if any, is extremely small, and is not likely to explain the existence of 294 

polyandry in this species. Some species with first male sperm precedence have been shown to change 295 

their pattern of sperm precedence with mating interval and number of matings. For instance, in the silk 296 

worm Bombix mori, the paternity share of the first male changes from 0.95 to 0.06 in two hours (Suzuki, 297 

Okuda, & Shinbo, 1996). However, other species, such as the wasp Diadromus pulchellus, keep their 298 

pattern of sperm precedence across mating intervals (Agoze, Poirié, & Périquet, 1995). 299 

Still other factors, that could influence the pattern of sperm precedence remain to be tested. For instance, 300 

in Drosophila pseudoobscura, a mostly monandrous fly, females use the sperm from the second mating 301 

whenever the first mating opportunity failed (Fisher et al., 2013). The authors make a distinction 302 

between true polyandry and pseudopolyandry, that occurs when females remate but no sperm 303 

competition takes place, owing for instance to lack of sperm transfer. This could be the case in spider 304 

mites as well, a hypothesis that remains to be tested.  Indeed, sperm depletion, or incomplete sperm 305 

transfer in the first male may allow for some paternity share between the first and second as sperm 306 

depletion is a phenomenon potentially common in spider mites (Krainacker & Carey, 1989). In addition, 307 

an early study, in which the effect of several mating intervals on sperm precedence in spider mites was 308 

tested without controlling for sperm depletion, found that second males can sire some offspring when 309 

the interval between copulations is shorter than 24 hours (Helle 1967). Unfortunately, the frequency of 310 

sperm-depleted matings in spider mite natural populations, which is expected to determine its role in 311 

shaping the evolution of sperm precedence, is unknown.  312 

The fact that we could not detect evidence for first male sperm precedence being incomplete 313 

suggests that indirect genetic benefits of polyandry for females are absent in this species. Moreover, 314 

females that mated multiply paid a cost of fecundity. Most of the few studies that explored the costs 315 

and benefits of polyandry in species with first male sperm precedence show that male ejaculates provide 316 

benefits to the females (e.g. Thailayil et al. 2011; Helinski and Harrington 2012). However, in Nasonia 317 
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vitripennis, a mostly monandrous wasp, female costs have been observed in patches with intense male 318 

harassment (Rebecca A. Boulton & Shuker, 2015). Since no differences in sex-ratio were observed 319 

between treatments, the mating costs observed here are, most likely, a reflection of the negative effects 320 

of multiple matings coupled with increased number of mating attempts, as observed in N. vitripennis. 321 

The fact that we only found a cost when the interval between the first and subsequent matings was of 322 

24 hours, may be explained by differences in female receptivity across different mating intervals. 323 

Indeed, females that mated 24 hours after the first mating, independently of the number of matings, 324 

took longer to mate and interrupted matings more often than females that re-mated immediately after 325 

the first mating (authors personal observations, Clemente et al. 2016). This suggests that females 326 

become more resistant to mating sometime after the first copulation, consequently suffering increased 327 

costs.   328 

In the absence of clear benefits of multiple mating for females and of direct benefits for males, 329 

if the costs associated with those matings are low, males may mate with mated females because there 330 

is no selection pressure to eliminate such behaviour. In several species, the cost of mating for males 331 

varies with the mating status of females. Matings with mated females may entail fewer costs, if males 332 

allocate sperm differently according to the reproductive value of females (“strategic ejaculates”; 333 

Simmons 2001; Kelly and Jennions 2011). Accordingly, in species with first male sperm precedence, 334 

we expect males to invest more in matings with virgin females, as those are the ones with the highest 335 

reproductive value. Our results are in line with this prediction, as they show that only first males (those 336 

that mate with virgins) pay a cost of mating. This suggests that males invest more in mating with these 337 

females, either increasing their mating rate or transferring more sperm in each copulation, although it 338 

is intriguing that fewer costs were detected at the highest female density. In contrast, second males, 339 

which mate with mated females, payed the same survival costs in patches with different female 340 

densities. Previous results show that copulations with virgin females occur at a faster rate and last longer 341 

than copulations with mated females (Rodrigues et al., 2017), which is in line with these results. 342 

Therefore, males may engage into matings with virgins, which result in high offspring yield but also a 343 

survival cost, or into matings with mated females, yielding no offspring but also fewer costs.   344 
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Despite being ineffective, matings with mated females may still yield some benefits to males. A 345 

decrease in the total fecundity of multiply-mated females has been observed in spider mites (Macke et 346 

al., 2012), a result that we recover here. This may translate into fewer offspring being sired by first 347 

males (the Relative Fitness hypothesis, Macke et al. 2012).  Here, we validated this hypothesis by 348 

showing that first males produced fewer offspring (i.e., daughters) when mating with females that mated 349 

multiply 24 hours later. Because the proportion of daughters remained unchanged, this decrease in the 350 

number of daughters is probably due to a decrease in fecundity of females owing to costs of mating and 351 

male harassment. Therefore, mating with mated females can increase the relative reproductive success 352 

of subsequent males, by reducing the genetic contribution of the first males to the following generations. 353 

This strategy requires that the harming males (or their brothers) produce some descendance and pay a 354 

low penalty with this behaviour. Apart from the life-history costs of the behaviour, which we showed 355 

here to be low, they could lose mating opportunities with virgin females. Therefore, this behaviour 356 

should be most favoured in expanding populations: males can first mate with virgin females, then later, 357 

when these become scarce, turn to harming mated females, hence not suffering much from lost 358 

opportunities. Moreover, the uncovered benefits should be dependent on population structure. Indeed, 359 

in large populations, benefits should be mitigated as they are shared by all other males of the population, 360 

while In small populations, relatedness can be high, in which case, reducing the fitness of other, related, 361 

males in the population may not be advantageous (e.g., Carazo et al. 2014). Yet, this is contingent on 362 

the scale of competition, because if competition occurs locally, males are not expected to behave 363 

differentially towards related males, as these are their only competitors (Pizzari et al. 2015). Finally, 364 

the effectiveness of this behaviour relies on a collective action as one mating is not enough to reduce 365 

the fitness of the first. Therefore, the precise population structure in which this behaviour will be 366 

beneficial may be very specific. Roughly, it should correspond to a situation of budding dispersal 367 

(Gardner, Arce, & Alpedrinha, 2009), in which related males arrive together in a patch occupied by 368 

unrelated individuals, and collectively reduce the fitness of unrelated males for the next generation. 369 

Although spider mites are expected to face different conditions during their dispersal-colonization 370 

phases, it is not clear that such beneficial conditions occur often enough for this behaviour to be selected. 371 

Hence, the probability of selecting this trait in males will hinge on how often they will encounter the 372 
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conditions favouring it. It is thus important to design experiments varying population structure to test 373 

these ideas.  374 

Altogether, our results show that multiple mating is costly for females but that matings with mated 375 

females are potentially beneficial for males. The latter was not expected, given that we are dealing with 376 

a species with first male sperm precedence. The consequences of polyandry in such species have been 377 

seldom explored, leaving a gap in our knowledge (but see Dougherty et al. 2016). Indeed, if we had 378 

found no benefits of polyandry in both sexes, we could speculate that selection would be favouring 379 

monandry with time. Conversely, if males and females benefited with polyandry, we could expect that 380 

selection would maintain polyandry, which in turn, would open the door for an evolution of the sperm 381 

precedence pattern itself. Because we found that some males may benefit from mating with mated 382 

females, but that females suffer costs with polyandry, conflicts between sexes should be present and the 383 

direction of selection on polyandry will depend on which sex is winning this conflict.  384 
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Figure 1. Protocol followed to assess sperm precedence and female fecundity and survival.  a) 516 

Mating Protocol. Groups of 5 females and 5/6 males were placed together on patches until they mated. 517 

Females mated once (O), twice (T) or multiply (M) with a mating interval between the first and 518 

subsequent matings of either 0 hours (I, Immediately) or 24 hours (L, later). Females are bigger than 519 

males and are always resistant to pesticide (white). Males are smaller and represented in black or white. 520 

Different male colours represent different phenotypes after pesticide exposure: black males are 521 

susceptible, while white males are resistant to pesticide. Note, that in this scheme only one male type 522 

order is represented (resistant males first). However, both orders were performed. Dotted arrows: 523 

females were transferred immediately from one patch to the next; full arrows: females were maintained 524 

on a patch for 24 hours with males; dashed arrows: females were maintained on a patch for 24 hours 525 

without males. b) Data Collection. Each female was isolated on a leaf disc placed in water-soaked 526 

cotton and its survival was checked daily. Every 3 days, the female was transferred to a new leaf disc 527 

where she could continue to lay eggs. The number of eggs laid by the female on each leaf disc was 528 

measured after each transfer. On the 6th day, the leaf disc was moved into a container with cotton soaked 529 

in diluted pesticide. On the 12th day offspring sex-ratio and survival were measured, to extract offspring 530 

paternity and the total number of daughters sired by the first male. X, death owing to pesticide.  531 
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Figure 2. Effect of multiple mating on offspring number and paternity. Females mated once (O), 540 

twice (T), or multiply (M). Re-mating was set immediately (0h interval; I) or 24 hours after the first 541 

mating (24h interval; L). a) Proportion of fertilized and unfertilized offspring across treatments. 542 

Fertilized offspring (i.e. daughters) is divided into proportion of daughters sired by the first (light grey) 543 

and by the second male (dark grey). Note however, that natural death in the quiescent stage may be 544 

confounded with death by pesticide exposure, in both bars representing fertilized offspring. Unfertilized 545 

offspring (sons) is represented in white. Vertical bars correspond to standard errors of the mean. b) 546 

Mean number of eggs laid daily by females. Vertical bars correspond to standard errors of the mean. 547 

Asterisk (*) represent significant level (P < 0.05).  548 

a) 549 
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Figure 3. Effect of multiple mating on male and female survival. a) Female survival curve. Females 558 

mated once (O), twice (T), or multiply (M). Re-mating was set immediately (0h interval; I) or 24 hours 559 

after the first mating (24h interval; L). Each line corresponds to different number of matings: continuous 560 

line, one mating; dashed line, two matings; dotted line, multiple matings. Grey lines correspond to L 561 

rematings; black dashed and black dotted lines correspond to I re-matings.   b) and c) Male survival 562 

curves. Males were placed in patches with 1, 5 or 20 virgin (b) or mated (c) females every day and its 563 

survival was followed. Distinct types of lines represent different number of females per patch status: 564 

continuous line, one female; dashed line, 5 females; dotted line, 20 females. 565 
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 568 

Figure 4. Total mean number of offspring sired by the first male. Females mated once (O), twice 569 

(T), or multiply (M). Re-mating was set immediately (0h interval; I) or 24 hours after the first mating 570 

(24h interval; L). Vertical bars correspond to standard errors of the mean. Asterisk (*) represent 571 

significant level (P < 0.05).  572 
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