4,897 research outputs found

    Productivity gains from migration: an analysis of Cape Verdean return migrants

    Get PDF
    Are return migrants more productive than non-migrants? If so, is it a causal effect or simply self-selection? Existing literature has not reached a consensus on the role of return migration for origin countries. To answer these research questions, an empirical analysis was performed based on household data collected in Cape Verde. One of the most common identification problems in the migration literature is the presence of migrant self-selection. In order to disentangle potential selection bias, we use instrumental variable estimation using variation provided by unemployment rates in migrant destination countries, which is compared with OLS and Nearest Neighbor Matching (NNM) methods. The results using the instrumental variable approach provide evidence of labour income gains due to return migration, while OLS underestimates the coefficient of interest. This bias points towards negative self-selection of return migrants on unobserved characteristics, although the different estimates cannot be distinguished statistically. Interestingly, migration duration and occupational changes after migration do not seem to influence post-migration income. There is weak evidence that return migrants from the United States have higher income gains caused by migration than the ones who returned from Portugal.NSBE - UN

    Accor: financial forecasting and valuation

    Get PDF
    This equity research on AccorHotels is divided between two parts. The first part aims to analyze key hotel industry drivers, such as rooms, RevPAR and the M&A activity. Moreover, it provides a thorough company description. The second part delves into the crucial factors influencing the valuation. It covers projections for revenues, cost structure, and invested capital. The culmination is a scenario-based Discounted Cash Flow (DCF) - Weighted Average Cost of Capital (WACC) analysis to determine a target price and provide a sell/hold/buy recommendation. The discounted cash flow analysis established a target price of €37.8 for December 2024. This assessment leads to a total return of 18%, resulting in a BUY recommendation

    Channel estimation in massive MIMO systems

    Get PDF
    Last years were characterized by a great demand for high data throughput, good quality and spectral efficiency in wireless communication systems. Consequently, a revolution in cellular networks has been set in motion towards to 5G. Massive multiple-input multiple-output (MIMO) is one of the new concepts in 5G and the idea is to scale up the known MIMO systems in unprecedented proportions, by deploying hundreds of antennas at base stations. Although, perfect channel knowledge is crucial in these systems for user and data stream separation in order to cancel interference. The most common way to estimate the channel is based on pilots. However, problems such as interference and pilot contamination (PC) can arise due to the multiplicity of channels in the wireless link. Therefore, it is crucial to define techniques for channel estimation that together with pilot contamination mitigation allow best system performance and at same time low complexity. This work introduces a low-complexity channel estimation technique based on Zadoff-Chu training sequences. In addition, different approaches were studied towards pilot contamination mitigation and low complexity schemes, with resort to iterative channel estimation methods, semi-blind subspace tracking techniques and matrix inversion substitutes. System performance simulations were performed for the several proposed techniques in order to identify the best tradeoff between complexity, spectral efficiency and system performance

    Layer degradation triggers an abrupt structural transition in multiplex networks

    Get PDF
    Network robustness is a central point in network science, both from a theoretical and a practical point of view. In this paper, we show that layer degradation, understood as the continuous or discrete loss of links' weight, triggers a structural transition revealed by an abrupt change in the algebraic connectivity of the graph. Unlike traditional single layer networks, multiplex networks exist in two phases, one in which the system is protected from link failures in some of its layers and one in which all the system senses the failure happening in one single layer. We also give the exact critical value of the weight of the intra-layer links at which the transition occurs for continuous layer degradation and its relation to the value of the coupling between layers. This relation allows us to reveal the connection between the transition observed under layer degradation and the one observed under the variation of the coupling between layers.Comment: 8 pages, and 8 figures in Revtex style. Submitted for publicatio

    A polynomial eigenvalue approach for multiplex networks

    Get PDF
    We explore the block nature of the matrix representation of multiplex networks, introducing a new formalism to deal with its spectral properties as a function of the inter-layer coupling parameter. This approach allows us to derive interesting results based on an interpretation of the traditional eigenvalue problem. More specifically, we reduce the dimensionality of our matrices but increase the power of the characteristic polynomial, i.e, a polynomial eigenvalue problem. Such an approach may sound counterintuitive at first glance, but it allows us to relate the quadratic problem for a 2-Layer multiplex system with the spectra of the aggregated network and to derive bounds for the spectra, among many other interesting analytical insights. Furthermore, it also permits to directly obtain analytical and numerical insights on the eigenvalue behavior as a function of the coupling between layers. Our study includes the supra-adjacency, supra-Laplacian, and the probability transition matrices, which enable us to put our results under the perspective of structural phases in multiplex networks. We believe that this formalism and the results reported will make it possible to derive new results for multiplex networks in the future.Comment: 15 pages including figures. Submitted for publicatio

    On degree-degree correlations in multilayer networks

    Get PDF
    We propose a generalization of the concept of assortativity based on the tensorial representation of multilayer networks, covering the definitions given in terms of Pearson and Spearman coefficients. Our approach can also be applied to weighted networks and provides information about correlations considering pairs of layers. By analyzing the multilayer representation of the airport transportation network, we show that contrasting results are obtained when the layers are analyzed independently or as an interconnected system. Finally, we study the impact of the level of assortativity and heterogeneity between layers on the spreading of diseases. Our results highlight the need of studying degree-degree correlations on multilayer systems, instead of on aggregated networks.Comment: 8 pages, 3 figure

    A process of rumor scotching on finite populations

    Get PDF
    Rumor spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumor is propagated by pairwise interactions between spreaders and ignorants. Spreaders can become stiflers only after contacting spreaders or stiflers. Here we propose a model that considers the traditional assumptions, but stiflers are active and try to scotch the rumor to the spreaders. An analytical treatment based on the theory of convergence of density dependent Markov chains is developed to analyze how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can be applied to study systems in which informed agents try to stop the rumor propagation. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumor propagation.Comment: 13 pages, 11 figure
    • …
    corecore