51 research outputs found

    CONSTRUÇÃO DE BASES DE DADOS APLICADAS EM DIFERENTES ATIVIDADES DE ENFERMAGEM

    Get PDF
    The purpose of this study is to discuss the utilization of informatics in nursing and the construction of computerized data bases by nursing professionals that have no previous experience with computers. Three data bases developed during the pos graduate nursing course are described.O presente trabalho mostra a importância da utilização da informática na enfermagem e revela que é possível criar bases de dados informatizadas, mesmo que o seu autor não seja um "expert" no assunto. Descreve bases de dados desenvolvidas no transcorrer da disciplina de informática do Programa de Pós-Graduação da Escola de Enfermagem da Universidade de São Paulo

    CONSTRUÇÃO DE BASES DE DADOS APLICADAS EM DIFERENTES ATIVIDADES DE ENFERMAGEM

    No full text
    O presente trabalho mostra a importância da utilização da informática na enfermagem e revela que é possível criar bases de dados informatizadas, mesmo que o seu autor não seja um "expert" no assunto. Descreve bases de dados desenvolvidas no transcorrer da disciplina de informática do Programa de Pós-Graduação da Escola de Enfermagem da Universidade de São Paulo.The purpose of this study is to discuss the utilization of informatics in nursing and the construction of computerized data bases by nursing professionals that have no previous experience with computers. Three data bases developed during the pos graduate nursing course are described

    Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study

    No full text
    Background Results from retrospective studies suggest that use of neuromuscular blocking agents during general anaesthesia might be linked to postoperative pulmonary complications. We therefore aimed to assess whether the use of neuromuscular blocking agents is associated with postoperative pulmonary complications. Methods We did a multicentre, prospective observational cohort study. Patients were recruited from 211 hospitals in 28 European countries. We included patients (aged ≥18 years) who received general anaesthesia for any in-hospital procedure except cardiac surgery. Patient characteristics, surgical and anaesthetic details, and chart review at discharge were prospectively collected over 2 weeks. Additionally, each patient underwent postoperative physical examination within 3 days of surgery to check for adverse pulmonary events. The study outcome was the incidence of postoperative pulmonary complications from the end of surgery up to postoperative day 28. Logistic regression analyses were adjusted for surgical factors and patients’ preoperative physical status, providing adjusted odds ratios (ORadj) and adjusted absolute risk reduction (ARRadj). This study is registered with ClinicalTrials.gov, number NCT01865513. Findings Between June 16, 2014, and April 29, 2015, data from 22803 patients were collected. The use of neuromuscular blocking agents was associated with an increased incidence of postoperative pulmonary complications in patients who had undergone general anaesthesia (1658 [7·6%] of 21694); ORadj 1·86, 95% CI 1·53–2·26; ARRadj –4·4%, 95% CI –5·5 to –3·2). Only 2·3% of high-risk surgical patients and those with adverse respiratory profiles were anaesthetised without neuromuscular blocking agents. The use of neuromuscular monitoring (ORadj 1·31, 95% CI 1·15–1·49; ARRadj –2·6%, 95% CI –3·9 to –1·4) and the administration of reversal agents (1·23, 1·07–1·41; –1·9%, –3·2 to –0·7) were not associated with a decreased risk of postoperative pulmonary complications. Neither the choice of sugammadex instead of neostigmine for reversal (ORadj 1·03, 95% CI 0·85–1·25; ARRadj –0·3%, 95% CI –2·4 to 1·5) nor extubation at a train-of-four ratio of 0·9 or more (1·03, 0·82–1·31; –0·4%, –3·5 to 2·2) was associated with better pulmonary outcomes. Interpretation We showed that the use of neuromuscular blocking drugs in general anaesthesia is associated with an increased risk of postoperative pulmonary complications. Anaesthetists must balance the potential benefits of neuromuscular blockade against the increased risk of postoperative pulmonary complications

    Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study

    No full text
    Background: Results from retrospective studies suggest that use of neuromuscular blocking agents during general anaesthesia might be linked to postoperative pulmonary complications. We therefore aimed to assess whether the use of neuromuscular blocking agents is associated with postoperative pulmonary complications. Methods: We did a multicentre, prospective observational cohort study. Patients were recruited from 211 hospitals in 28 European countries. We included patients (aged ≥18 years) who received general anaesthesia for any in-hospital procedure except cardiac surgery. Patient characteristics, surgical and anaesthetic details, and chart review at discharge were prospectively collected over 2 weeks. Additionally, each patient underwent postoperative physical examination within 3 days of surgery to check for adverse pulmonary events. The study outcome was the incidence of postoperative pulmonary complications from the end of surgery up to postoperative day 28. Logistic regression analyses were adjusted for surgical factors and patients' preoperative physical status, providing adjusted odds ratios (ORadj) and adjusted absolute risk reduction (ARRadj). This study is registered with ClinicalTrials.gov, number NCT01865513. Findings: Between June 16, 2014, and April 29, 2015, data from 22 803 patients were collected. The use of neuromuscular blocking agents was associated with an increased incidence of postoperative pulmonary complications in patients who had undergone general anaesthesia (1658 [7·6%] of 21 694); ORadj 1·86, 95% CI 1·53–2·26; ARRadj −4·4%, 95% CI −5·5 to −3·2). Only 2·3% of high-risk surgical patients and those with adverse respiratory profiles were anaesthetised without neuromuscular blocking agents. The use of neuromuscular monitoring (ORadj 1·31, 95% CI 1·15–1·49; ARRadj −2·6%, 95% CI −3·9 to −1·4) and the administration of reversal agents (1·23, 1·07–1·41; −1·9%, −3·2 to −0·7) were not associated with a decreased risk of postoperative pulmonary complications. Neither the choice of sugammadex instead of neostigmine for reversal (ORadj 1·03, 95% CI 0·85–1·25; ARRadj −0·3%, 95% CI −2·4 to 1·5) nor extubation at a train-of-four ratio of 0·9 or more (1·03, 0·82–1·31; −0·4%, −3·5 to 2·2) was associated with better pulmonary outcomes. Interpretation: We showed that the use of neuromuscular blocking drugs in general anaesthesia is associated with an increased risk of postoperative pulmonary complications. Anaesthetists must balance the potential benefits of neuromuscular blockade against the increased risk of postoperative pulmonary complications. Funding: European Society of Anaesthesiology

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore