176 research outputs found

    Dual Self-Assembled Nanostructures from Intrinsically Disordered Protein Polymers with LCST Behavior and Antimicrobial Peptides

    Get PDF
    Antimicrobial peptides (AMPs) have attracted great interest as they constitute one of the most promising alternatives against drug-resistant infections. Their amphipathic nature provides them antimicrobial and immunomodulatory properties but also the ability to selfassemble into supramolecular nanostructures. Here, we propose their use as selfassembling domains to drive hierarchical organization of intrinsically disordered protein polymers (IDPPs). Using a modular approach, hybrid protein-engineered polymers were recombinantly produced, thus combining designer AMPs and a thermoresponsive IDPP, an elastin-like recombinamer (ELR). We exploited the ability of these AMPs and ELRs to self-assemble to develop supramolecular nanomaterials by way of a dual-assembly process. First, the AMPs trigger the formation of nanofibers, then the thermoresponsiveness of the ELRs enables assembly into fibrillar aggregates. The interplay between the assembly of AMPs and ELRs provides an innovative molecular tool in the development of self-assembling nanosystems with potential use for biotechnological and biomedical applications.Este trabajo forma parte de los proyectos de investigación MAT2016-78903-R y RTI2018-096320-B-C22 del Ministerio de Ciencia e Innovación, del proyecto VA317P18 de la Junta de Castilla y León, del proyecto 0624_2IQBIONEURO_6_E del programa Interreg V A España Portugal POCTEP y del Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leó

    Threatened, endemic and harvested – two overlooked European skates

    Get PDF
    Sandy ray Leucoraja circularis and shagreen ray L. fullonica are large-bodied skate species occurring in the Northeast Atlantic and Mediterranean on the edge of the continental shelf and upper slope. These areas are not sampled effectively by fishery-independent trawl surveys, and fisheries-dependent data are also limited, as these species are landed as a bycatch. Consequently, there are no formal assessments or reference points, even though they are harvested as part of the Total Allowable Catch (TAC) for generic skates and rays. The implementation of data-limited assessment methods is often reliant on robust life-history data, which was lacking. Therefore, biological data were collected from 116 specimens of L. circularis (21–116 cm LT) and 54 specimens of L. fullonica (19–100 cm LT). Length at 50% maturity for L. circularis was estimated at 81 cm LT and 100 cm LT for males and females, respectively. This large size at maturity makes them more biologically vulnerable than other skate species managed under the generic TAC. This inherent vulnerability, low representation of mature individuals in trawl surveys and bycatch risk due to spatial overlap with important commercial fisheries suggests that both species, assessed as Threatened, would benefit from precautionary species-specific management measures. L. circularis and L. fullonica are respectively, the only IUCN listed Endangered and Vulnerable elasmobranchs that are endemic to Europe and also occur in UK waters. Therefore, with the eastern Atlantic being the main part of their distribution, urgent research and management action is of even greater importance to conserve them

    Controlled Production of Elastin-like Recombinamer Polymer-Based Membranes at a Liquid–Liquid Interface by Click Chemistry

    Get PDF
    Producción CientíficaDiffusion of organic and inorganic molecules controls most industrial and biological processes that occur in a liquid phase. Although significant efforts have been devoted to the design and operation of large-scale purification systems, diffusion devices with adjustable biochemical characteristics have remained difficult to achieve. In this regard, micrometer-scale, bioinspired membranes with tunable diffusion properties have been engineered by covalent cross-linking of two elastin-like recombinamers (ELRs) at a liquid−liquid interface. The covalent approach selected provides the desired ELR-based membranes with structural support, and modulation of the concentration of the polypeptides employed confers direct control of the thickness, pore size, and diffusive properties over a broad range of molecular weights (4−150 kDa). The recombinant and versatile nature of the proteinaceous building blocks employed further paves the way to engineering bioactive motifs within the membrane scaffold, thereby widening their applicability in the biological field.The authors are grateful for funding from the Spanish Government (MAT2016-78903-R, RTI2018-096320-B-C22), the Ministerio de Educacion, Cultura y Deporte para la ́ Formacion de Profesorado Universitario to MG (FPU15- ́ 00448), the Junta de Castilla y Leon (VA317P18), the Interreg ́ V A España Portugal POCTEP (0624_2IQBIONEURO_6_E), and the Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leo

    Synthesis of Nylon 6/Modified Carbon Black Nanocomposites for Application in Uric Acid Adsorption

    Get PDF
    High uric acid levels cause different clinic conditions. One of them is hyperuricemia, which leads to kidney damage. A solution for eliminating uric acid in the blood is by hemodialysis, which is performed using nanocomposite membranes. In this work, Nylon 6 nanocomposites were synthesized with modified carbon black (MCB), which were considered candidate materials for hemodialysis membranes. The modification of carbon black was made with citric acid using the variable-frequency ultrasound method. The new MCB was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and dispersion tests. Nylon 6/MCB nanocomposites were processed using the ultrasound-assisted melt-extrusion method to improve the dispersion procedure of the nanoparticles. The Nylon 6/MCB nanocomposites were characterized by FTIR, TGA, and differential scanning calorimetry (DSC). These were assessed for the absorption of toxins and hemocompatibility. MBC and nanocomposites showed excellent uric acid removal (78–82%) and hemocompatibility (1.6–1.8%). These results suggest that Nylon 6/MCB nanocomposites with low loading percentages can be used on a large scale without compatibility problems with blood

    Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

    Get PDF
    In mountain areas, the phenology and productivity of grassland are closely related to snow dynamics. However, the influence that snow melt timing has on grassland growing still needs further attention for a full understanding, particularly at high spatial resolution. Aiming to reduce this knowledge gap, this work exploits 1 m resolution snow depth and Normalized Difference Vegetation Index observations acquired with an Unmanned Aerial Vehicle at a sub-alpine site in the Pyrenees. During two snow seasons (2019–2020 and 2020–2021), 14 NDVI and 17 snow depth distributions were acquired over 48 ha. Despite the snow dynamics being different in the two seasons, the response of grasslands greening to snow melt-out exhibited a very similar pattern in both. The NDVI temporal evolution in areas with distinct melt-out dates reveals that sectors where the melt-out date occurs in late April or early May (optimum melt-out) reach the maximum vegetation productivity. Zones with an earlier or a later melt-out rarely reach peak NDVI values. The results obtained in this study area, suggest that knowledge about snow depth distribution is not needed to understand NDVI grassland dynamics. The analysis did not reveal a clear link between the spatial variability in snow duration and the diversity and richness of grassland communities within the study area

    Validity of a food-frequency questionnaire for estimating calcium intake in adolescent swimmers

    Get PDF
    Introduction: accurate estimates of the intake of specific nutrients such as calcium (Ca) are crucial to correctly rank or classify subjects in the distribution of intakes. Therefore, we aimed to estimate the relative validity of a food frequency questionnaire (FFQ) for measuring Ca intake in two different groups of healthy adolescents, a normoactive control group and a physically active group of swimmers with 2 non-consecutive 24h recalls (2 x 24HR) collected as the reference method. Methods: Pearson correlations, agreement between the 24HR and the FFQ at an individual level and questionnaire’s ability to assign individuals to the same quartile of intake as the 24HR were calculated. Results: mean daily Ca intakes were 564.6 mg (SD 232.0) and 895.9 mg (SD 343.1) for the 2 x 24HR and FFQ respectively in controls (P < 0.001); and 731.9 mg (SD 299.8) and 979.8 mg (SD 408.5) for the 2 x 24HR and FFQ respectively in swimmers (P < 0.001). Pearson correlations were 0.52 for controls and 0.47 for swimmers after correcting for intra-variability. Cross-classification analysis indicated that 73.7% of controls and 63.1% of swimmers were classified correctly or in the adjacent category. Also, the 89% of the control group and 79% of swimmers were classified correctly with the FFQ according to the dietary reference intake (DRI) of 1300 mg/d. Conclusions: for both groups, the FFQ tended to overestimate Ca intake, however it demonstrated fairly good ability to classify subjects into extremes of Ca intake and identified adolescents having Ca intakes lower than the dietary reference intake

    Psychosocial factors related to physical activity in frail and prefrail elderly people

    Get PDF
    Background: Increased physical activity (PA) is a very important factor in a healthy aging lifestyle. Psychosocial factors have also a main role in the initiation and maintenance of this behavior, but nowadays its implications for frailty elderly people are unknown, therefore, the aim of this study was to identify the psychosociological variables of behavior change that influence the practice of (PA) in frail and prefrail elderly. Methods: A total of 103 frail and pre-frail elderly people (72 females) participated in this cross-sectional study, on the framework of the EXERNET-Elder3.0 project. Age ranged from 68–94 years (mean = 80.4 ± 5.9 years). Individualized face-to-face interviews according to the constructs of the Transtheoretical Model of Change (TTM) (decisional balance (DB) and self-efficacy (SE)], social support (SS) (family and friends) and outcome expectations (OE) were administered to all participants. Results: Significant differences were found in DB, perceived benefits (PBn), SE, family-related SS and OE as a function of stages of change (SoC) (p < 0.005), but no significant were found in perceived barriers (PBrr) (p = 0.259) and friends-related SS (p = 0.068). According to the Scheffé post-hoc test, those in advanced SoC (Action-Maintenance), scored higher than those in lower SoC (Precontemplation-Contemplation and Preparation). Conclusion: The scores obtained from the study variables differed according to the SoC, supporting the external validity for the use of the TTM in frailty elderly. Further research is needed to determine the impact of PBrr and friends-related SS on this people, as well as to identify the validity of this model in the long-term in this population

    Multi-Layered Films Containing a Biomimetic Stimuli-Responsive Recombinant Protein

    Get PDF
    Electrostatic self-assembly was used to fabricate new smart multi-layer coatings, using a recombinant elastin-like polymer (ELP) and chitosan as the counterion macromolecule. The ELP was bioproduced, purified and its purity and expected molecular weight were assessed. Aggregate size measurements, obtained by light scattering of dissolved ELP, were performed as a function of temperature and pH to assess the smart properties of the polymer. The build-up of multi-layered films containing ELP and chitosan, using a layer-by-layer methodology, was followed by quartz-crystal microbalance with dissipation monitoring. Atomic force microscopy analysis permitted to demonstrate that the topography of the multi-layered films could respond to temperature. This work opens new possibilities for the use of ELPs in the fabrication of biodegradable smart coatings and films, offering new platforms in biotechnology and in the biomedical area

    Association Between Physical Fitness and Bone Strength and Structure in 3- to 5-Year-Old Children

    Get PDF
    Background: The positive association between physical fitness and bone structure has been widely investigated in children and adolescents, yet no studies have evaluated this influence in young children (ie, preschoolers). Hypothesis: Fit children will present improved bone variables when compared with unfit children, and no sex-based differences will emerge in the sample. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: Handgrip strength, standing long jump (SLJ), speed/agility, balance, and cardiorespiratory fitness (CRF) were assessed using the Assessing FITness levels in PREschoolers (PREFIT) test battery in 92 children (50 boys; age range, 3-5 years). A peripheral quantitative computed tomography scan was performed at 38% of the length of the nondominant tibia. Cluster analysis from handgrip strength, SLJ, speed/agility, and CRF was developed to identify fitness groups. Bone variables were compared between sexes and between cluster groups. The association between individual physical fitness components and different bone variables was also tested. Results: Three cluster groups emerged: fit (high values on all included physical fitness variables), strong (high strength values and low speed/agility and CRF), and unfit (low strength, speed/agility, and CRF). The fit group presented higher values than the strong and unfit groups for total and cortical bone mineral content, cortical area, and polar strength strain index (all P < 0.05). The fit group also presented a higher cortical thickness when compared with the unfit group (P < 0.05). Handgrip, SLJ, and speed/agility predicted all bone variables except for total and cortical volumetric bone mineral density. No differences were found for bone variables between sexes. Conclusion: The results suggest that global fitness in preschoolers is a key determinant for bone structure and strength but not volumetric bone mineral density. Clinical Relevance: Physical fitness is a determinant for tibial bone mineral content, structure, and strength in very young children. Performing physical fitness tests could provide useful information related to bone health in preschoolers

    A Self-Organized ECM-Mimetic Model Based on an Amphiphilic Multiblock Silk-Elastin-Like co-Recombinamer with a Concomitant Dual Physical Gelation Process

    Get PDF
    Although significant progress has been made in the area of injectable hydrogels for biomedical applications and model cell niches, further improvements are still needed, especially in terms of mechanical performance, stability, and biomimicry of the native fibrillar architecture found in the extracellular matrix (ECM). This work focuses on the design and production of a silk-elastin-based injectable multiblock corecombinamer that spontaneously forms a stable physical nanofibrillar hydrogel under physiological conditions. That differs from previously reported silk-elastin-like polymers on a major content and predominance of the elastin-like part, as well as a more complex structure and behavior of such a part of the molecule, which is aimed to obtain well-defined hydrogels. Rheological and DSC experiments showed that this system displays a coordinated and concomitant dual gelation mechanism. In a first stage, a rapid, thermally driven gelation of the corecombinamer solution takes place once the system reaches body temperature due to the thermal responsiveness of the elastin-like (EL) parts and the amphiphilic multiblock design of the corecombinamer. A bridged micellar structure is the dominant microscopic feature of this stage, as demonstrated by AFM and TEM. Completion of the initial stage triggers the second, which is comprised of a stabilization, reinforcement, and microstructuring of the gel. FTIR analysis shows that these events involve the formation of β-sheets around the silk motifs. The emergence of such β-sheet structures leads to the spontaneous self-organization of the gel into the final fibrous structure. Despite the absence of biological cues, here we set the basis of the minimal structure that is able to display such a set of physical properties and undergo microscopic transformation from a solution to a fibrous hydrogel. The results point to the potential of this system as a basis for the development of injectable fibrillar biomaterial platforms toward a fully functional, biomimetic, artificial extracellular matrix, and cell niches.Este trabajo forma parte de Proyectos de Investigación financiados por la Comisión Europea a través del Fondo Europeo de Desarrollo Regional (ERDF), por el del MINECO (MAT2013-41723-R, MAT2013- 42473-R, PRI-PIBAR-2011-1403 y MAT2012-38043), la Junta de Castilla y León (VA049A11, VA152A12 y VA155A12) y el Instituto de Salud Carlos III bajo el Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León
    corecore