21 research outputs found

    Inner and outer star forming regions over the disks of spiral galaxies. I. Sample characterization

    Full text link
    Context. The knowledge of abundance distributions is central to understanding the formation and evolution of galaxies. Most of the relations employed for the derivation of gas abundances have so far been derived from observations of outer disk HII regions, despite the known differences between inner and outer regions. Aims. Using integral field spectroscopy (IFS) observations we aim to perform a systematic study and comparison of two inner and outer HII regions samples. The spatial resolution of the IFS, the number of objects and the homogeneity and coherence of the observations allow a complete characterization of the main observational properties and differences of the regions. Methods. We analyzed a sample of 725 inner HII regions and a sample of 671 outer HII regions, all of them detected and extracted from the observations of a sample of 263 nearby, isolated, spiral galaxies observed by the CALIFA survey. Results. We find that inner HII regions show smaller equivalent widths, greater extinction and luminosities, along with greater values of [NII]{\lambda}6583/H{\alpha} and [OII]{\lambda}3727/[OIII]{\lambda}5007 emission-line ratios, indicating higher metallicites and lower ionization parameters. Inner regions have also redder colors and higher photometric and ionizing masses, although Mion/Mphot is slighty higher for the outer regions. Conclusions. This work shows important observational differences between inner and outer HII regions in star forming galaxies not previously studied in detail. These differences indicate that inner regions have more evolved stellar populations and are in a later evolution state with respect to outer regions, which goes in line with the inside-out galaxy formation paradigm.Comment: 16 page

    Inner and outer star forming regions over the disks of spiral galaxies. II. A comparative of physical properties and evolutionary stages

    Full text link
    The HII regions are all studied employing the same general prescriptions, despite the possible influence of their environment in their star formation processes. Through the analysis of two samples of 725 inner and 671 outer disk HII region observed spectra, we explore possible systematic differences between their ionising clusters physical properties (metallicity, mass, and age), comparing observations and predictions by photoionisation models. Higher metallicities are confirmed for inner regions, although there are important discrepancies between the diagnostic diagrams. Calibrations based on the N2 index may underestimate inner regions O/H due to the [NII] saturation at solar metallicities. The degeneracy between the age and ionisation parameter affects O/H calibrations based on the O3N2 index. Innermost regions have enhanced N/O ratios, indicating an increase in the slope of the relation between N/O and O/H. Ionisation parameter calibrations based on the [SII]/H{\alpha} ratio are not valid for inner regions due to the bivalued behaviour of this ratio with O/H. Innermost regions have lower [OII]/[OIII] ratios than expected, indicating a possible non-linear relation between u and Z. Ionising and non-ionising populations are present in both inner and outer regions. Inner regions show larger ionising cluster masses that possibly compose star-forming complexes. Outer regions might be affected by stochastic effects. Equivalent widths indicate younger ages for outer regions, but degeneracy between evolution and underlying population effects prevent a quantitative determination. Inner regions have larger angular sizes, lower filling factors, and larger ionised hydrogen masses. The confirmed systematic differences between ionising clusters of inner and outer HII regions condition the validity and range of reliability of O/H and u calibrations commonly applied to the study of HII regions.Comment: Accepted for publication in A&A. 14 pages, 12 figure

    Evolution of Chemistry in the envelope of Hot Corinos (ECHOS). I. Extremely young sulphur chemistry in the isolated Class 0 object B335

    Full text link
    Within the project Evolution of Chemistry in the envelope of HOt corinoS (ECHOS), we present a study of sulphur chemistry in the envelope of the Class 0 source B335 through observations in the spectral range 7, 3, and 2 mm. We have modelled observations assuming LTE and LVG approximation. We have also used the code Nautilus to study the time evolution of sulphur species. We have detected 20 sulphur species with a total gas-phase S abundance similar to that found in the envelopes of other Class 0 objects, but with significant differences in the abundances between sulphur carbon chains and sulphur molecules containing oxygen and nitrogen. Our results highlight the nature of B335 as a source especially rich in sulphur carbon chains unlike other Class 0 sources. The low presence or absence of some molecules, such as SO and SO+, suggests a chemistry not particularly influenced by shocks. We, however, detect a large presence of HCS+ that, together with the low rotational temperatures obtained for all the S species (<15 K), reveals the moderate or low density of the envelope of B335. We also find that observations are better reproduced by models with a sulphur depletion factor of 10 with respect to the sulphur cosmic elemental abundance. The comparison between our model and observational results for B335 reveals an age of 104^4<<t<<105^5 yr, which highlights the particularly early evolutionary stage of this source. B335 presents a different chemistry compared to other young protostars that have formed in dense molecular clouds, which could be the result of accretion of surrounding material from the diffuse cloud onto the protostellar envelope of B335. In addition, the analysis of the SO2/C2S, SO/CS, and HCS+/CS ratios within a sample of prestellar cores and Class 0 objects show that they could be used as good chemical evolutionary indicators of the prestellar to protostellar transition

    Gas Phase Elemental Abundances in Molecular CloudS (GEMS) V. Methanol in Taurus

    Full text link
    Context. Methanol, one of the simplest complex organic molecules in the interstellar medium, has been shown to be present and extended in cold environments such as starless cores. Studying the physical conditions at which CH3OH starts its efficient formation is important to understand the development of molecular complexity in star-forming regions. Aims. We aim to study methanol emission across several starless cores and investigate the physical conditions at which methanol starts to be efficiently formed, as well as how the physical structure of the cores and their surrounding environment affect its distribution. Methods. Methanol and C18O emission lines at 3 mm have been observed with the IRAM 30 m telescope within the large programme Gas phase Elemental abundances in Molecular CloudS towards 66 positions across 12 starless cores in the Taurus Molecular Cloud. A non-LTE (local thermodynamic equilibrium) radiative transfer code was used to compute the column densities in all positions. We then used state-of-the-art chemical models to reproduce our observations. Results. We have computed N(CH3OH)/N(C18O) column density ratios for all the observed offsets, and the following two different behaviours can be recognised: the cores where the ratio peaks at the dust peak and the cores where the ratio peaks with a slight offset with respect to the dust peak (∼10 000 AU). We suggest that the cause of this behaviour is the irradiation on the cores due to protostars nearby which accelerate energetic particles along their outflows. The chemical models, which do not take irradiation variations into account, can reproduce the overall observed column density of methanol fairly well, but they cannot reproduce the two different radial profiles observed. Conclusions. We confirm the substantial effect of the environment on the distribution of methanol in starless cores. We suggest that the clumpy medium generated by protostellar outflows might cause a more efficient penetration of the interstellar radiation field in the molecular cloud and have an impact on the distribution of methanol in starless cores. Additional experimental and theoretical work is needed to reproduce the distribution of methanol across starless cores. © S. Spezzano et al. 2021.Acknowledgements. The authors are grateful to the anonymous referee for insightful comments. A large part of the data analysis described in this paper was performed during the spring of 2020, in the beginning of the COVID pandemic and during a hard lockdown. S.S. wishes to thank the Max Planck Society for the flexibility that was allowed during the pandemic, because it contributed to maintaining a clear and focus mind during the hours that she could dedicate to her work, and overall to keep calm, while waiting for the ‘storm’ to pass. Based on analysis carried out with the CASSIS software (http://cassis.irap. omp.eu) and CDMS and JPL spectroscopic databases and LAMDA molecular databases. CASSIS has been developed by IRAP-UPS/CNRS. S.S. wishes to thank the Max Planck Society for the Independent Max Planck Research Group funding. A.F., D.N.A. and M.R.B. are funded by Spanish MICINN through PID2010-106235GB-I00 national research project. V.W. acknowledges the CNRS program Physique et Chimie du Milieu Interstellaire (PCMI) co-funded by the Centre National d’Etudes Spatiales (CNES). A.V. and A.P. are the members of the Max Planck Partner Group at the Ural Federal University. A.V. and A.P. acknowledge the support of the Russian Ministry of Science and Education via the State Assignment Contract no. FEUZ-2020-0038

    Linking the dust and chemical evolution: Taurus and Perseus -- New collisional rates for HCN, HNC, and their C, N, and H isotopologues

    Full text link
    HCN, HNC, and their isotopologues are ubiquitous molecules that can serve as chemical thermometers and evolutionary tracers to characterize star-forming regions. Despite their importance in carrying information that is vital to studies of the chemistry and evolution of star-forming regions, the collision rates of some of these molecules have not been available for rigorous studies in the past. We perform an up-to-date gas and dust chemical characterization of two different star-forming regions, TMC 1-C and NGC 1333-C7, using new collisional rates of HCN, HNC, and their isotopologues. We investigated the possible effects of the environment and stellar feedback in their chemistry and their evolution. With millimeter observations, we derived their column densities, the C and N isotopic fractions, the isomeric ratios, and the deuterium fractionation. The continuum data at 3 mm and 850 μ\mum allowed us to compute the emissivity spectral index and look for grain growth as an evolutionary tracer. The H13^{13}CN/HN13^{13}C ratio is anticorrelated with the deuterium fraction of HCN, thus it can readily serve as a proxy for the temperature. The spectral index (β1.342.09)(\beta\sim 1.34-2.09) shows a tentative anticorrelation with the H13^{13}CN/HN13^{13}C ratio, suggesting grain growth in the evolved, hotter, and less deuterated sources. Unlike TMC 1-C, the south-to-north gradient in dust temperature and spectral index observed in NGC 1333-C7 suggests feedback from the main NGC 1333 cloud. With this up-to-date characterization of two star-forming regions, we found that the chemistry and the physical properties are tightly related. The dust temperature, deuterium fraction, and the spectral index are complementary evolutionary tracers. The large-scale environmental factors may dominate the chemistry and evolution in clustered star-forming regions.Comment: 25 pages, 20 figure

    Gas phase Elemental abundances in Molecular cloudS (GEMS) VII. Sulfur elemental abundance

    Get PDF
    Gas phase Elemental abundances in molecular CloudS (GEMS) is an IRAM 30m large program aimed at determining the elemental abundances of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) in a selected set of prototypical star-forming filaments. In particular, the elemental abundance of S remains uncertain by several orders of magnitude and its determination is one of the most challenging goals of this program. We have carried out an extensive chemical modeling of the fractional abundances of CO, HCO+^+, HCN, HNC, CS, SO, H2_2S, OCS, and HCS+^+ to determine the sulfur depletion toward the 244 positions in the GEMS database. These positions sample visual extinctions from AV_V \sim 3 mag to >>50 mag, molecular hydrogen densities ranging from a few 103^3~cm3^{-3} to 3×\times106^6~cm3^{-3}, and Tk_k \sim 10-35 K. Most of the positions in Taurus and Perseus are best fitted assuming early-time chemistry, t=0.1 Myr, ζH2\zeta_{H_2}\sim (0.5-1)×\times1016^{-16} s1^{-1}, and [S/H]\sim1.5×\times106^{-6}. On the contrary, most of the positions in Orion are fitted with t=1~Myr and ζH2\zeta_{H_2}\sim 1017^{-17} s1^{-1}. Moreover, \sim40% of the positions in Orion are best fitted assuming the undepleted sulfur abundance, [S/H]\sim1.5×\times105^{-5}. Our results suggest that sulfur depletion depends on the environment. While the abundances of sulfur-bearing species are consistent with undepleted sulfur in Orion, a depletion factor of \sim20 is required to explain those observed in Taurus and Perseus. We propose that differences in the grain charge distribution in the envelopes of the studied clouds might explain these variations. The shocks associated with past and ongoing star formation could also contribute to enhance [S/H] in Orion.Comment: 22 pages, 15 figures, Astronomy and Astrophysics, in pres

    Gas phase Elemental abundances in Molecular cloudS (GEMS) VIII. Unlocking the CS chemistry: the CH + S\rightarrow CS + H and C2_2 + S\rightarrow CS + C reactions

    Full text link
    We revise the rates of reactions CH + S -> CS + H and C_2 + S -> CS + C, important CS formation routes in dark and diffuse warm gas. We performed ab initio calculations to characterize the main features of all the electronic states correlating to the open shell reactants. For CH+S we have calculated the full potential energy surfaces for the lowest doublet states and the reaction rate constant with a quasi-classical method. For C_2+S, the reaction can only take place through the three lower triplet states, which all present deep insertion wells. A detailed study of the long-range interactions for these triplet states allowed to apply a statistic adiabatic method to determine the rate constants. This study of the CH + S reaction shows that its rate is nearly independent on the temperature in a range of 10-500 K with an almost constant value of 5.5 10^{-11} cm^3/s at temperatures above 100~K. This is a factor \sim 2-3 lower than the value obtained with the capture model. The rate of the reaction C_2 + S depends on the temperature taking values close to 2.0 10^{-10} cm^3/s at low temperatures and increasing to 5. 10^{-10} cm^3/s for temperatures higher than 200~K. Our modeling provides a rate higher than the one currently used by factor of \sim 2. These reactions were selected for involving open-shell species with many degenerate electronic states, and the results obtained in the present detailed calculations provide values which differ a factor of \sim 2-3 from the simpler classical capture method. We have updated the sulphur network with these new rates and compare our results in the prototypical case of TMC1 (CP). We find a reasonable agreement between model predictions and observations with a sulphur depletion factor of 20 relative to the sulphur cosmic abundance, but it is not possible to fit all sulphur-bearing molecules better than a factor of 10 at the same chemical time.Comment: 13 pages, 10 figure

    11 de febrero: Día Internacional de la Mujer y la Niña... ¡en Astronomía!

    No full text
    Contributions to the XIV.0 Scientific Meeting (virtual) of the Spanish Astronomical Society, held 13-15 July 2020, online at https://www.sea-astronomia.es/reunion-cientifica-2020, id.261La ONU celebra el Día Internacional de la Mujer y la Niña en Ciencia cada 11 de febrero con el objetivo de "lograr el acceso pleno y equitativo en la involucración de las mujeres y las niñas en la ciencia". Desde 2018, la Sociedad Española de Astronomía, coordinada por la Comisión Mujer y Astronomía, se suma a esta iniciativa con diversas actividades para dar visibilidad a nuestras astrónomas: un 30% de la comunidad astrofísica profesional en España. En esta contribución haremos un recorrrido por las ediciones de 2019 y 2020. Comenzaremos con nuestra actividad insignia: Chatea con una astrónoma. Durante 12 horas initerrumpidas, cualquiera, desde cualquier rincón del mundo con conexión a internet tiene acceso directo a una astrofísica profesional para conversar sobre astrofísica, su experiencia como mujer investigadora o la carrera científica. Se trata de una actividad divulgativa única por su naturaleza privada y ubicua. Continuaremos con el concurso de dibujo "Mujer y Astronomía" para escolares.Los dibujos son sorprendentes por la creatividad e imaginación con las que la gente menuda observa el papel de la mujer en la investigación astrofísica histórica y actual. Finalmente, la página web de la SEA muestra durante febrero y marzo un carrusel en portada con fotografías de las "Mujeres de la SEA". La recopilación de fotografías y breves biografías nos ha permitido realizar un repositorio sobre astrofísicas de la SEA que está disponible en la página web de la Comisión Mujer y Astronomía

    Gas phase Elemental abundances in Molecular cloudS (GEMS) V. Methanol in Taurus

    No full text
    International audienceContext. Methanol, one of the simplest complex organic molecules in the interstellar medium, has been shown to be present and extended in cold environments such as starless cores. Studying the physical conditions at which CH3OH starts its efficient formation is important to understand the development of molecular complexity in star-forming regions. Aims: We aim to study methanol emission across several starless cores and investigate the physical conditions at which methanol starts to be efficiently formed, as well as how the physical structure of the cores and their surrounding environment affect its distribution. Methods: Methanol and C18O emission lines at 3 mm have been observed with the IRAM 30 m telescope within the large programme Gas phase Elemental abundances in Molecular CloudS towards 66 positions across 12 starless cores in the Taurus Molecular Cloud. A non-LTE (local thermodynamic equilibrium) radiative transfer code was used to compute the column densities in all positions. We then used state-of-the-art chemical models to reproduce our observations. Results: We have computed N(CH3OH)/N(C18O) column density ratios for all the observed offsets, and the following two different behaviours can be recognised: the cores where the ratio peaks at the dust peak and the cores where the ratio peaks with a slight offset with respect to the dust peak (~10 000 AU). We suggest that the cause of this behaviour is the irradiation on the cores due to protostars nearby which accelerate energetic particles along their outflows. The chemical models, which do not take irradiation variations into account, can reproduce the overall observed column density of methanol fairly well, but they cannot reproduce the two different radial profiles observed. Conclusions: We confirm the substantial effect of the environment on the distribution of methanol in starless cores. We suggest that the clumpy medium generated by protostellar outflows might cause a more efficient penetration of the interstellar radiation field in the molecular cloud and have an impact on the distribution of methanol in starless cores. Additional experimental and theoretical work is needed to reproduce the distribution of methanol across starless cores. Based on observations carried out with the IRAM NOEMA interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain)

    Gas phase Elemental abundances in Molecular cloudS (GEMS): VII. Sulfur elemental abundance

    No full text
    Context. Gas phase Elemental abundances in molecular CloudS (GEMS) is an IRAM 30-m Large Program aimed at determining the elemental abundances of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) in a selected set of prototypical star-forming filaments. In particular, the elemental abundance of S remains uncertain by several orders of magnitude, and its determination is one of the most challenging goals of this program. Aims. This paper aims to constrain the sulfur elemental abundance in Taurus, Perseus, and Orion A based on the GEMS molecular database. The selected regions are prototypes of low-mass, intermediate-mass, and high-mass star-forming regions, respectively, providing useful templates for the study of interstellar chemistry. Methods. We have carried out an extensive chemical modeling of the fractional abundances of CO, HCO+, HCN, HNC, CS, SO, H2S, OCS, and HCS+ to determine the sulfur depletion toward the 244 positions in the GEMS database. These positions sample visual extinctions from AV ∼ 3 mag to &gt;50 mag, molecular hydrogen densities ranging from a few × 103 cm3 to 3 × 106 cm3, and Tk ∼ 10-35 K. We investigate the possible relationship between sulfur depletion and the grain charge distribution in different environments. Results. Most of the positions in Taurus and Perseus are best fitted assuming early-time chemistry, t = 0.1 Myr, ζH2 ∼ (0.51) × 1016 s1, and [S/H] ∼ 1.5 × 106. On the contrary, most of the positions in Orion are fitted with t = 1 Myr and ζH2 ∼ 1017 s1. Moreover, ∼40% of the positions in Orion are best fitted assuming the undepleted sulfur abundance, [S/H] ∼ 1.5 × 105. We find a tentative trend of sulfur depletion increasing with density. Conclusions. Our results suggest that sulfur depletion depends on the environment. While the abundances of sulfur-bearing species are consistent with undepleted sulfur in Orion, a depletion factor of ∼20 is required to explain those observed in Taurus and Perseus. We propose that differences in the grain charge distribution might explain these variations. Grains become negatively charged at a visual extinction of AV ∼ 3.5 mag in Taurus and Perseus. At this low visual extinction, the S+ abundance is high, X(S+) &gt; 106, and the electrostatic attraction between S+ and negatively charged grains could contribute to enhance sulfur depletion. In Orion, the net charge of grains remains approximately zero until higher visual extinctions (AV ∼ 5.5 mag), where the abundance of S+ is already low because of the higher densities, thus reducing sulfur accretion. The shocks associated with past and ongoing star formation could also contribute to enhance [S/H].</p
    corecore