43 research outputs found

    Política y nihilismo.

    Get PDF
    Sin resume

    Política y nihilismo.

    Get PDF
    Sin resume

    An Evaluation of the Effectivity of the Green Leaves Biostimulant on Lettuce Growth, Nutritional Quality, and Mineral Element Efficiencies under Optimal Growth Conditions

    Get PDF
    The use of biostimulants is becoming a useful tool for increasing crop productivity while enhancing nutritional quality. However, new studies are necessary to confirm that the joint application of different types of biostimulants, together with bioactive compounds, is effective and not harmful to plants. This study examined the impact of applying the biostimulant Green Leaves, comprising Macrocystis algae extract and containing a mixture of amino acids, corn steep liquor extract, calcium, and the bioactive compound glycine betaine. The effect of applying two different doses (3 and 5 mL L−1) of this biostimulant was evaluated on lettuce plants, and growth and quality parameters were analyzed along with photosynthetic efficiency, nutritional status, and nutrient efficiency parameters. The application of Green Leaves improved plant weight (25%) and leaf area and enhanced the photosynthetic rate, the accumulation of soluble sugars and proteins, and the agronomic efficiency of all essential nutrients. The 3 mL L−1 dose improved the nutritional quality of lettuce plants, improving the concentration of phenolic compounds and ascorbate and the antioxidant capacity and reducing NO3− accumulation. The 5 mL L−1 dose improved the absorption of most nutrients, especially N, which reduced the need for fertilizers, thus reducing costs and environmental impact. In short, the Green Leaves product has been identified as a useful product for obtaining higher yield and better quality.Funding for open access charge: Universidad de Granada/CBU

    Oort cloud perturbations as a source of hyperbolic Earth impactors

    Get PDF
    Altres ajuts: acords transformatius de la UABThe observation of interstellar objects 1I/'Oumuamua and 2I/Borisov suggests the existence of a larger population of smaller projectiles that impact our planet with unbound orbits. We analyze an asteroidal grazing meteor (FH1) recorded by the Finnish Fireball Network on October 23, 2022. FH1 displayed a likely hyperbolic orbit lying on the ecliptic plane with an estimated velocity excess of ∼0.7 km s at impact. FH1 may either be an interstellar object, indicating a high-strength bias in this population, or an Oort cloud object, which would reinforce migration-based solar system models. Furthermore, under the calculated uncertainties, FH1 could potentially be associated with the passage of Scholz's binary star system. Statistical evaluation of uncertainties in the CNEOS database and study of its hyperbolic fireballs reveals an anisotropic geocentric radiant distribution and low orbital inclinations, challenging the assumption of a randomly incoming interstellar population. Orbital integrations suggest that the event on March 9, 2017 (IM2) from CNEOS may have experienced gravitational perturbation during the Scholz fly-by, contingent upon velocity overestimation within the expected range. These findings suggest that apparent interstellar meteors may, in fact, be the result of accelerated meteoroid impacts caused by close encounters with massive objects within or passing through our solar system

    Oort cloud perturbations as a source of hyperbolic Earth impactors

    Full text link
    The observation of interstellar objects 1I/'Oumuamua and 2I/Borisov suggests the existence of a larger population of smaller projectiles that impact our planet with unbound orbits. We analyze an asteroidal grazing meteor (FH1) recorded by the Finnish Fireball Network on October 23, 2022. FH1 displayed a likely hyperbolic orbit lying on the ecliptic plane with an estimated velocity excess of \sim0.7 km\,s1^{-1} at impact. FH1 may either be an interstellar object, indicating a high-strength bias in this population, or an Oort cloud object, which would reinforce migration-based solar system models. Furthermore, under the calculated uncertainties, FH1 could potentially be associated with the passage of Scholz's binary star system. Statistical evaluation of uncertainties in the CNEOS database and study of its hyperbolic fireballs reveals an anisotropic geocentric radiant distribution and low orbital inclinations, challenging the assumption of a randomly incoming interstellar population. Orbital integrations suggest that the event on March 9, 2017 (IM2) from CNEOS may have experienced gravitational perturbation during the Scholz fly-by, contingent upon velocity overestimation within the expected range. These findings suggest that apparent interstellar meteors may, in fact, be the result of accelerated meteoroid impacts caused by close encounters with massive objects within or passing through our solar system.Comment: Accepted for publication in Icaru

    Transcutaneous electrical neuromodulation of the cervical spinal cord depends both on the stimulation intensity and the degree of voluntary activity for training. A pilot study

    Get PDF
    Electrical enabling motor control (eEmc) through transcutaneous spinal cord stimulation offers promise in improving hand function. However, it is still unknown which stimulus intensity or which muscle force level could be better for this improvement. Nine healthy individuals received the following interventions: (i) eEmc intensities at 80%, 90% and 110% of abductor pollicis brevis motor threshold combined with hand training consisting in 100% handgrip strength; (ii) hand training consisting in 100% and 50% of maximal handgrip strength combined with 90% eEmc intensity. The evaluations included box and blocks test (BBT), maximal voluntary contraction (MVC), F wave persistency, F/M ratio, spinal and cortical motor evoked potentials (MEP), recruitment curves of spinal MEP and cortical MEP and short-interval intracortical inhibition. The results showed that: (i) 90% eEmc intensity increased BBT, MVC, F wave persistency, F/M ratio and cortical MEP recruitment curve; 110% eEmc intensity increased BBT, F wave persistency and cortical MEP and recruitment curve of cortical MEP; (ii) 100% handgrip strength training significantly modulated MVC, F wave persistency, F/M wave and cortical MEP recruitment curve in comparison to 50% handgrip strength. In conclusion, eEmc intensity and muscle strength during training both influence the results for neuromodulation at the cervical level

    Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study

    Full text link
    Electrical enabling motor control (eEmc) through transcutaneous spinal cord stimulation offers promise in improving hand function. However, it is still unknown which stimulus intensity or which muscle force level could be better for this improvement. Nine healthy individuals received the following interventions: (i) eEmc intensities at 80%, 90% and 110% of abductor pollicis brevis motor threshold combined with hand training consisting in 100% handgrip strength; (ii) hand training consisting in 100% and 50% of maximal handgrip strength combined with 90% eEmc intensity. The evaluations included box and blocks test (BBT), maximal voluntary contraction (MVC), F wave persistency, F/M ratio, spinal and cortical motor evoked potentials (MEP), recruitment curves of spinal MEP and cortical MEP and short-interval intracortical inhibition. The results showed that: (i) 90% eEmc intensity increased BBT, MVC, F wave persistency, F/M ratio and cortical MEP recruitment curve; 110% eEmc intensity increased BBT, F wave persistency and cortical MEP and recruitment curve of cortical MEP; (ii) 100% handgrip strength training significantly modulated MVC, F wave persistency, F/M wave and cortical MEP recruitment curve in comparison to 50% handgrip strength. In conclusion, eEmc intensity and muscle strength during training both influence the results for neuromodulation at the cervical level

    Results of a combined monolithic crystal and an array of ASICs controlled SiPMs

    Full text link
    [EN] In this work we present the energy and spatial resolutions we have obtained for a γ ray detector based on a monolithic LYSO crystal coupled to an array of 256 SiPMs. Two crystal configurations of the same trapezoidal shape have been tried. In one approach all surfaces were black painted but the exit one facing the photosensor array which was polished. The other approach included a retroreflector (RR) layer coupled to the entrance face of the crystal powering the amount of transmitted light to the photosensors. Two coupling media between the scintillator and the SiPM array were used, namely direct coupling by means of optical grease and coupling through an array of light guides. Since the same operational voltage was supplied to the entire array, it was needed to equalize their gains before feeding their signals to the Data Acquisition system. Such a job was performed by means of 4 scalable Application Specific Circuits (ASICs). An energy resolution of about 24.4% has been achieved for the direct coupling with the RR layer together with a spatial resolution of approximately 2.9 mm at the detector center. With the light guides coupling the effects of image compression at the edges are significantly minimized, but worsening the energy resolution to about 33.1% with a spatial resolution nearing 4 mm at the detector center. & 2013 Elsevier B.V. All rights reserved.cknowledgments This work was supported by the Centre for Industrial Technological Development co-funded by FEDER through the Technology Fund (DREAM Project, IDI-20110718), the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (IþDþI) under Grant no. FIS2010-21216-CO2-01 and the Valencian Local Government under Grant PROMETEO 2008/114Conde Castellanos, PE.; González Martínez, AJ.; Hernández Hernández, L.; Bellido, P.; Iborra Carreres, A.; Crespo Navarro, E.; Moliner Martínez, L.... (2014). Results of a combined monolithic crystal and an array of ASICs controlled SiPMs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 734:132-136. https://doi.org/10.1016/j.nima.2013.08.079S13213673

    Impact of the COVID-19 pandemic in the early-onset colorectal cancer

    Get PDF
    COVID-19 pandemic; Early-onset colorectal cancerPandemia de COVID-19 Cáncer colorrectal precozPandèmia de COVID-19; Càncer colorectal precoçThe COVID19 pandemic has affected the spectrum of cancer care worldwide. Early onset colorectal cancer (EOCRC) is defined as diagnosis below the age of 50. Patients with EOCRC faced multiple challenges during the COVID19 pandemic and in some institutions it jeopardized cancer diagnosis and care delivery. Our study aims to identify the clinicopathological features and outcomes of patients with EOCRC in our Centre during the first wave of the pandemic in comparison with the same period in 2019 and 2021. Patients with EOCRC visited for the first time at Vall d'Hebron University Hospital in Spain from the 1st March to 31st August of 2019, 2020 and 2021 were included in the analysis. 177 patients with EOCRC were visited for the first time between 2019 and 2021, of which 90 patients met the inclusion criteria (2019: 30 patients, 2020: 29 patients, 2021: 31 patients). Neither differences in frequency nor in stage at diagnosis or at first visit during the given periods were observed. Of note, indication of systemic therapy in the adjuvant or metastatic setting was not altered. Days to treatment initiation and enrollment in clinical trials in this subpopulation was not affected due to the COVID-19 outbreak.This work was supported by the Cancer Research UK (CRUK) grant OPTIMISTICC (C10674/A27140)

    Seminario Permanente de Estudios LGBTIQ+

    Get PDF
    Seminario de periodicidad mensual en el que exponer y someter a discusión interdisciplinar trabajos de investigación actualmente en curso principalmente en la UCM, tanto en el marco del Máster Oficial de Estudios LGBTIQ+ como en distintos programas de doctorado
    corecore