35 research outputs found

    Surface versus crystal-termination effects in the optical properties of surfaces

    Full text link
    We prove, by realistic microscopic calculations within the sp^3s^* Tight Binding method for GaAs (110) and (100), that the surface optical properties are not influenced by long-range crystal termination effects, and hence that they can be consistently studied considering slabs of limited thickness (20 - 30 \AA). The origin of derivative-like and bulk-like lineshapes in Reflection Anisotropy Spectra is also discussed, analyzing the effects arising from possible surface-induced reduction, broadening, and shifting of the bulk spectrum near the surface.Comment: 10 figures. In press in Physical Review B, scheduled 15 Aug. 199

    Ab initio calculation of excitonic effects in the optical spectra of semiconductors

    Full text link
    An ab initio approach to the calculation of excitonic effects in the optical absorption spectra of semiconductors and insulators is formulated. It starts from a quasiparticle bandstructure calculation and is based on the relevant Bethe--Salpeter equation. An application to bulk silicon shows a substantial improvement with respect to previous calculations in the description of the experimental spectrum, for both peak positions and lineshape.Comment: 4 pages, 1 figur

    Dynamical excitonic effects in metals and semiconductors

    Full text link
    The dynamics of an electron--hole pair induced by the time--dependent screened Coulomb interaction is discussed. In contrast to the case where the static electron--hole interaction is considered we demonstrate the occurrence of important dynamical excitonic effects in the solution of the Bethe--Salpeter equation.This is illustrated in the calculated absorption spectra of noble metals (copper and silver) and silicon. Dynamical corrections strongly affect the spectra, partially canceling dynamical self--energy effects and leading to good agreement with experiment.Comment: Accepted for publication on Phys. Rev. Let

    Bound excitons in time-dependent density-functional-theory: optical and energy-loss spectra

    Get PDF
    A robust and efficient frequency dependent and non-local exchange-correlation fxc(r,r;ω)f_{xc}(r,r';\omega) is derived by imposing time-dependent density-functional theory (TDDFT) to reproduce the many-body diagrammatic expansion of the Bethe-Salpeter polarization function. As an illustration, we compute the optical spectra of LiF, \sio and diamond and the finite momentum transfer energy-loss spectrum of LiF. The TDDFT results reproduce extremely well the excitonic effects embodied in the Bethe-Salpeter approach, both for strongly bound and resonant excitons. We provide a working expression for fxcf_{xc} that is fast to evaluate and easy to implement.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let

    Ab initio study of reflectance anisotropy spectra of a sub-monolayer oxidized Si(100) surface

    Full text link
    The effects of oxygen adsorption on the reflectance anisotropy spectrum (RAS) of reconstructed Si(100):O surfaces at sub-monolayer coverage (first stages of oxidation) have been studied by an ab initio DFT-LDA scheme within a plane-wave, norm-conserving pseudopotential approach. Dangling bonds and the main features of the characteristic RAS of the clean Si(100) surface are mostly preserved after oxidation of 50% of the surface dimers, with some visible changes: a small red shift of the first peak, and the appearance of a distinct spectral structure at about 1.5 eV. The electronic transitions involved in the latter have been analyzed through state-by-state and layer-by-layer decompositions of the RAS. We suggest that new interplay between present theoretical results and reflectance anisotropy spectroscopy experiments could lead to further clarification of structural and kinetic details of the Si(100) oxidation process in the sub-monolayer range.Comment: 21 pages, 8 figures. To be published in Physical Rev.

    Quasiparticle Electronic structure of Copper in the GW approximation

    Full text link
    We show that the results of photoemission and inverse photoemission experiments on bulk copper can be quantitatively described within band-structure theory, with no evidence of effects beyond the single-quasiparticle approximation. The well known discrepancies between the experimental bandstructure and the Kohn-Sham eigenvalues of Density Functional Theory are almost completely corrected by self-energy effects. Exchange-correlation contributions to the self-energy arising from 3s and 3p core levels are shown to be crucial.Comment: 4 pages, 2 figures embedded in the text. 3 footnotes modified and 1 reference added. Small modifications also in the text. Accepted for publication in PR

    Experimental and theoretical study of the yellowing of ancient paper

    Get PDF
    Paper is the most widely used writing support due to the remarkable properties of its principal component - cellulose - one of the most abundant biomaterials present on Earth. However, due to the complexity of the material, an exhaustive picture of its degradation pathways is still missing. In this paper, we will present recent results and progresses obtained in the comprehension of the role of cellulose oxidation in the yellowing of ancient paper. Visible and ultraviolet spectra of cellulose in ancient paper samples and reference modern samples artificially aged have been interpreted with the aid of ab-initio Time-Dependent Density Functional Theory calculations. Through the comparison of measured and calculated absorption spectra, several oxidized forms of cellulose polymers, acting as chromophores, and responsible for ancient paper yellowing were identified. The relative concentration of ketones and aldehydic groups depends on the environmental conditions in which samples were stored along their life
    corecore